Конвертер давления psi в bar


Таблица перевода единиц измерения давления PSI в BAR

Таблица перевода единиц измерения давления PSI в BAR 29.06.2015
От 1 до 1500 psi (от 0,07 до 103,45 бар)
psibar psibar psibar psibar psibar psibar
1 0.07 41 2.83 81 5.59 205 14.13 510 35.17 910 62.76
2 0.14 42 2.90 82 5.65 210 14.48 520 35.86 920 63.45
3 0.21 43 2.97 83 5.72 215 14.82 530 36.55 930 64.14
4 0.28 44 3.03 84 5.79 220 15.17 540 37.24 940 64.83
5 0.34 45 3.10 85 5.86 225 15.51 550 37.92 950 65.52
6 0.41 46 3.17 86 5.93 230 15.86 560 38.62 960 66.21
7 0.48 47 3.24 87 6.00 235 16.20 570 39.31 970 66.90
8 0.55 48 3.31 88 6.07 240 16.55 580 40.00 980 67.59
9 0.62 49 3.38 89 6.14 245 16.89 590 40.69 990 68.28
10 0.69 50 3.45 90 6.21 250 17.24 600 41.37 1000 68.95
11 0.76 51 3.52 91 6.27 255 17.58 610 42.07 1010 69.66
12 0.83 52 3.59 92 6.34 260 17.93 620 42.76 1020 70.34
13 0.90 53 3.65 93 6.41 265 18.27 630 43.45 1030 71.03
14 0.97 54 3.72 94 6.48 270 18.62 640 44.14 1040 71.72
15 1.03 55 3.79 95 6.55 275 18.96 650 44.82 1050 72.41
16 1.10 56 3.86 96 6.62 280 19.31 660 45.52 1060 73.10
17 1.17 57 3.93 97 6.69 285 19.65 670 46.21 1070 73.79
18 1.24 58 4.00 98 6.76 290 20.20 680 46.90 1080 74.48
19 1.31 59 4.07 99 6.83 295 20.34 690 47.59 1090 75.17
20 1.38 60 4.14 100 6.90 300 20.69 700 48.27 1100 75.86
21 1.45 61 4.21 105 7.24 310 21.37 710 48.97 1120 77.24
22 1.52 62 4.28 110 7.58 320 22.06 720 49.66 1140 78.62
23 1.59 63 4.34 115 7.93 330 22.75 730 50.34 1160 80.00
24 1.65 64 4.41 120 8.27 340 23.44 740 51.03 1180 81.38
25 1.72 65 4.48 125 8.62 350 24.13 750 51.71 1200 82.76
26 1.79 66 4.55 130 8.96 360 24.82 760 51.41 1220 84.14
27 1.86 67 4.62 135 9.31 370 25.51 770 53.10 1240 85.52
28 1.93 68 4.69 140 9.65 380 26.20 780 53.79 1260 86.90
29 2.00 69 4.76 145 10.10 390 26.89 790 54.48 1280 88.28
30 2.07 70 4.83 150 10.34 400 27.85 800 55.16 1300 89.66
31 2.14 71 4.90 155 10.69 410 28.27 810 55.86 1320 91.03
32 2.21 72 4.96 160 11.03 420 28.96 820 56.55 1340 92.41
33 2.28 73 5.03 165 11.38 430 29.65 830 57.24 1360 93.79
34 2.34 74 5.10 170 11.72 440 30.34 840 57.93 1380 95.17
35 2.41 75 5.17 175 12.07 450 31.03 850 58.61 1400 96.55
36 2.48 76 5.24 180 12.41 460 31.72 860 59.31 1420 97.93
37 2.55 77 5.31 185 12.76 470 32.41 870 60.00 1440 99.31
38 2.62 78 5.38 190 13.10 480 33.10 880 60.69 1460 100.69
39 2.69 79 5.45 195 13.45 490 33.79 890 61.38 1480 102.07
40 2.76 80 5.52 200 13.79 500 34.48 900 62.06 1500 103.45

Просмотров: 2695

Отзывы о статье: 0 (читать все отзывы о статье, добавить отзыв о статье)

Добавить отзыв

Дата: 17.01.2020

psi [psi] бар [бар] • популярные конвертеры единиц • конвертер давления, механического напряжения, модуля юнга • компактный калькулятор


Атмосферное давление

Атмосферное давление — это давление воздуха в данном месте. Обычно оно обозначает давление столба воздуха на единицу площади поверхности. Изменение в атмосферном давлении влияет на погоду и температуру воздуха. Люди и животные страдают от сильных перепадов давления. Пониженное давление вызывает у людей и животных проблемы разной степени тяжести, от психического и физического дискомфорта до заболеваний с летальным исходом. По этой причине, в кабинах самолетов поддерживается давление выше атмосферного на данной высоте, потому что атмосферное давление на крейсерской высоте полета слишком низкое.


Анероид содержит датчик — цилиндрическую гофрированную коробку (сильфон), связанную со стрелкой, которая поворачивается при повышении или понижении давления и, соответственно, сжатия или расширения сильфона

Атмосферное давление понижается с высотой. Люди и животные, живущие высоко в горах, например в Гималаях, адаптируются к таким условиям

Путешественники, напротив, должны принять необходимые меры предосторожности, чтобы не заболеть из-за того, что организм не привык к такому низкому давлению. Альпинисты, например, могут заболеть высотной болезнью, связанной с недостатком кислорода в крови и кислородным голоданием организма

Это заболевание особенно опасно, если находиться в горах длительное время. Обострение высотной болезни ведет к серьезным осложнениям, таким как острая горная болезнь, высокогорный отек легких, высокогорный отек головного мозга и острейшая форма горной болезни. Опасность высотной и горной болезней начинается на высоте 2400 метров над уровнем моря. Во избежание высотной болезни доктора советуют не употреблять депрессанты, такие как алкоголь и снотворное, пить много жидкости, и подниматься на высоту постепенно, например, пешком, а не на транспорте. Также полезно есть большое количество углеводов, и хорошо отдыхать, особенно если подъем в гору произошел быстро. Эти меры позволят организму привыкнуть к кислородной недостаточности, вызванной низким атмосферным давлением. Если следовать этим рекомендациям, то организму сможет вырабатывать больше красных кровяных телец для транспортировки кислорода к мозгу и внутренним органам. Для этого организм увеличат пульс и частоту дыхания.

Первая медицинская помощь в таких случаях оказывается немедленно

Важно переместить больного на более низкую высоту, где атмосферное давление выше, желательно на высоту ниже, чем 2400 метров над уровнем моря. Также используются лекарства и портативные гипербарические камеры

Это легкие переносные камеры, в которых можно повысить давление с помощью ножного насоса. Больного горной болезнью кладут в такую камеру, в которой поддерживается давление, соответствующее более низкой высоте над уровнем моря. Такая камера используется только для оказания первой медицинской помощи, после чего больного необходимо спустить ниже.

Некоторые спортсмены используют низкое давление, чтобы улучшить кровообращение. Обычно для этого тренировки проходят в нормальных условиях, а спят эти спортсмены в среде с низким давлением. Таким образом, их организм привыкает к высокогорным условиям и начинает вырабатывать больше красных кровяных телец, что, в свою очередь, повышает количество кислорода в крови, и позволяет достичь более высоких результатов в спорте. Для этого выпускаются специальные палатки, давление в которых регулируются. Некоторые спортсмены даже изменяют давление во всей спальне, но герметизация спальни — дорогостоящий процесс.

Самое читаемое

  • Сутки
  • Неделя
  • Месяц
  • Скрытая активация камеры браузерами: Большой Брат или технологический просчёт? +146 51,4k 118 64
  • 1С — Добро и зло. Расстановка точек в холиварах вокруг 1С +45 30,9k 114 544
  • Как я нашел способ отследить всех водителей «Ситимобил» +241 27,1k 106 128
  • НПП «Маяк» стал символом российского импортозамещения +121 67,5k 27 138
  • Не nginx единым: Айхор хостинг — цап-царап в прямом эфире +30 35,3k 29 101
  • В офисе Nginx прошел обыск. Копейко: «Nginx был разработан Сысоевым самостоятельно» +780 282k 284 1472
  • Что значит наезд Rambler Group на Nginx и основателей и как это отразится на онлайн-индустрии +419 125k 102 523
  • Хроника противостояния Рамблера и Nginx (обновлено 18 декабря, в 18:00) +157 92,6k 71 195
  • 30-минутный блэкаут в поддержку автора Nginx — Игоря Сысоева +153 85,6k 50 183
  • Open source – наше всё +444 82,6k 87 210
  • В офисе Nginx прошел обыск. Копейко: «Nginx был разработан Сысоевым самостоятельно» +780 282k 284 1472
  • Я больше не хочу работать, никогда и ни над чем. Но из меня научились выжимать результаты +352 148k 572 776
  • Что значит наезд Rambler Group на Nginx и основателей и как это отразится на онлайн-индустрии +419 125k 102 523
  • Y-метод — действительно простой способ собрать кубик Рубика +111 103k 521 78
  • Страх и ненависть в IT +300 102k 368 804

PSI в атмосферы: инструкция по переводу

Бар (метрические единицы) → фунт на квадратный дюйм (psi, британские и американские единицы)
Всем привет! Мы уже сталкивались с таким явлением, как различные меры измерения, которые взяты на вооружение автопроизводителями из различных уголков планеты. Сегодня я предлагаю ознакомиться с тем, как перевести psi в атмосферы, поскольку эта информация может иметь реальную практическую ценность. Итак, поехали…

Для чего нам нужны единицы замеров давления

В процессе обслуживания автотранспорта, особенно иностранного производства, приходится сталкиваться с тем, сколько атмосфер (БАР) составляет давление в колесной резине. У многих водителей всегда под рукой компрессор пневматического принципа действия, зачастую китайского производства. На нем можно заметить обозначение psi, к примеру, 200 или 300 psi. Это максимальный показатель, на который рассчитано оборудование — именно он применяется в большинстве европейских стран.

Отечественным автолюбителям больше знакомы традиционные «атмосферы», в которых было принято обозначать давление в шинах. На сегодняшний день в Сети есть доступные таблицы, которые с точностью дают возможность перевода из одной единицы измерения в другую. Аббревиатура PSI имеет вполне конкретную расшифровку — означает она, сколько фунтов приходится на 1 квадратный дюйм. Именно этот показатель взяли на вооружение большинство производителей импортных авто.

Нюансы перевода в разных единицах

На кузове многих «чистых европейцев» уже указана величина в psi, на которую ориентирует производитель. Для машин заграничных брендов, что собираются на нашей территории, действует показатель технических атмосфер. Итак, примерное соотношение будет следующим:

В 1 Атмосфере содержится 14 PSI.

Может возникнуть путаница, если на шине или компрессоре (кстати о том какой лучше выбрать читайте здесь) указаны допустимые показатели в БАР. На самом деле, 1 Бар примерно равен 1 атмосфере, потому можно взять на вооружение данное соотношение. Для тех. Кому интересно, как это все получилось математическим путем, приведем несложное доказательство:

  • в 1 фунте приблизительно содержится 0,453 килограмма;
  • в то же само время, в каждом квадратном дюйме 6,4516 кубических сантиметров.

Получаем, что один PSI будет содержать 0,07 кг/см3, или в каждой атмосфере, наоборот, будет примерно 14 PSI. Несмотря на то, что такие обозначения могут быть не совсем привычны российскому водителю, перевести обычно не составляет большого труда. Необходимость может возникнуть при покупке автомобильной резины или приспособлений для накачивания воздуха. В то же время, китайские изготовители уже зачастую указывают сразу несколько обозначений в своей продукции для удобства.

Как посчитать максимально быстро

Несмотря на некоторые погрешности в расчетах при переводе, они настолько ничтожны, что не приносят неудобства на практике. Для измерения давления вполне достаточно обходиться целыми числами и десятичными частями. Большинство бытовых манометров в своей шкале ограничены максимальным значением в 60 PSI. Теперь у Вас достаточно знаний и понимания. Как соотносятся между собой различные единицы измерения, которые могут быть связаны с давлением в автомобильных покрышках.

Как мы уже говорили выше, если шина Вашего автомобиля или насос имеет описываемое выше обозначение, то для перевода можно воспользоваться обычным калькулятором, взяв за основу приведенные математические выкладки. Или же прибегнуть к помощи специальных онлайн калькуляторов либо готовых таблиц с приведенными в них значениями. Такими способами можно делать переводы из одной единицы измерения в другую, или наоборот. Соотношения будут в любом случае справедливы и подходят для легковых и грузовых автомобилей, автобусов, мотоциклов. На этом будем прощаться, дорогие автолюбители и подписывайтесь на блог Андрея Кульпанова, чтобы быть в курсе наиболее интересных новостей. Пока!

Место для контестной рекламы

avto-kul.ru

Подытожим

Нужно сказать несколько слов об «иностранцах» в нашей таблице — измерениях «psi» и «psf».

Pounds scuare feet (psf) — это фунты на квадратный фут; ими, так же как и «psi» (pounds scuare inches) — фунтами на квадратный дюйм, может измеряться давление при описании в англоязычных источниках. Так, к примеру, один кгс/ см2 примерно равен 14 psi.

А на этом видео конкретным примером доступно проиллюстрировано, как перевести одну единицу в иную в рамках системы СИ:

Углубившись в тему, вскоре вы научитесь сами переводить не только МПа в килограмм с/см2, но и совершать обратный перевод, т.е. обращать килограмм с/см2 в МПа.

5 1 vote

Рейтинг статьи

Переводим из PSI в атмосферы или в бар

Существует простое правило, которое поможет с приемлемой точностью перевести давление из psi в атмосферы или бар. Для этого давление в psi необходимо поделить на 14. Полученный результат и будет давлением в барах или технических (физических) атмосферах. Для многих машин нормальным давлением является 26 psi, то есть 1,8 атмосферы. Летом можно увеличить давление до 28–29 psi, что составит 1,9–2,0 атм. Зимой же, если на дорогах снег или гололед, давление в шинах желательно сбросить до 23–25 psi, что соответствует 1,6–1,7 атм.

Правильное давление в шинах – один из залогов безопасной и экономичной езды, однако не всегда есть возможность воспользоваться компрессором, который показывает давление в привычных величинах. Прочитав эту статью, вы узнали, как перевести давление из psi в атм, благодаря чему всегда сможете поддерживать оптимальное давление в колесах.

В своей сегодняшней статье я бы хотел рассмотреть проблему, с которой сталкиваются некоторые автовладельцы. Вот в чем она заключается.

Некоторая часть пневматических насосов измеряют в технических атмосферах (именно это единица измерения наиболее понятна и привычна рядовому автолюбителю), а другая их часть, иностранного производства, чаще китайского, делает это в малопонятном для среднестатистического россиянина показателе PSI. Так, к примеру, на недорогих китайских компрессорах очень часто стоит отметка – 300 PSI, которая совсем не является наименованием марки наноса. Она — всего лишь показатель давления в колесах.

А поскольку данный вид показателя давления мало известен в некоторых странах, многие просто не знают, каким образом трактовать данное измерение и как эту цифру перевести в более понятные единицы.

Поэтому сейчас будем разбираться, что же из себя представляет показатель PSI, а также существует ли возможность перевести PSI в атмосферы и, если да, то как это можно сделать.

Pressure in Geology

A quartz crystal illuminated with a red laser pointer

Pressure is a critical element in geology. The formation of gemstones requires pressure, both for the natural and laboratory-made synthetic gemstones. Crude oil is also formed by intense pressure and heat from remnants of plants and animals. In contrast to gemstones, which mostly form in rock formations, oil is generally formed in the beds of water such as rivers and seas. Organic material is covered with sand and silt, which gradually accumulates above it. The weight of the water above and the sand exert pressure. With time, these materials are buried deeper and deeper and reach several kilometers below the Earth’s surface. As the temperature increases by about 25 °C per each kilometer below the surface, it reaches 50-80 °C at these depths. Depending on the total temperature and temperature fluctuation, gas may be created instead of oil.

Diamond tools

Natural Gemstones

Gemstone formation varies, but often pressure is an important factor. Diamonds, for example, are created in the mantle of the Earth, where intense pressure and temperatures are present. They then emerge on or near the surface during volcanic eruptions, when magma carries them up. Some diamonds come to Earth inside meteorites, and scientists speculate that their formation on other planets is similar to Earth.

Synthetic Gemstones

The synthetic gemstone industry on the industrial scale started in the 1950s, and it is currently expanding. Some consumers still prefer mined gemstones, but there is a shift in consumer preferences, especially because of the many problems with gemstone mining that came to light recently. Many consumers choose synthetic gemstones not only because of the lower price, but also because they believe that lab-produced stones have fewer issues such as human right violations, funding wars and conflicts, and child labor.

One of the methods for growing diamonds in the laboratory, the high-pressure high-temperature (HPHT) method, is by subjecting carbon to high temperature over 1000 °C and pressure of about 5 GPa. Generally, diamond seeds are used as a base and graphite is a high-purity carbon source from which the new diamond grows. This method is common, especially for making gemstones, because it is cheap compared to the alternative methods. These laboratory-grown diamonds have similar and sometimes superior properties to the naturally-formed diamonds, depending on the manufacturing method. They are often colored, however.

Diamonds are widely used for industrial purposes due to their properties, especially hardness. Optical qualities, as well as heat conductivity and resistance to alkalis and acids are also valued. Cutting tools use diamond coating, and diamond powder is included in abrasive materials. Currently, a large portion of industrial diamonds is made in the laboratories because synthetic production is cheaper than mining, and also because the demand for industrial diamonds cannot be met through mining exclusively.

Some companies now offer memorial diamonds. Those are grown from the carbon that was extracted from the hair or the cremation ashes of the deceased. The manufacturers market these diamonds as a memento to celebrate the life of the loved ones, and they are gaining popularity, especially on the markets of wealthy countries such as Japan and the USA.

The High-Pressure High-Temperature (HPHT) Process

The high-pressure high-temperature process is mainly used when working with synthetic diamonds. However, it is now also used on natural diamonds to enhance or adjust their color properties. Presses of different designs can be used in the process. Cubic-type presses are the most expensive and complicated. They are mainly used for enhancing or changing colors in natural diamonds. The growth within the capsule of the press is about 0.5 carats of rough diamond per day.

This article was written by Kateryna Yuri

Unit Converter articles were edited and illustrated by Anatoly Zolotkov

Общие сведения

В физике давление определяется как сила, действующая на единицу площади поверхности. Если две одинаковые силы действуют на одну большую и одну меньшую поверхность, то давление на меньшую поверхность будет больше. Согласитесь, гораздо страшнее, если вам на ногу наступит обладательница шпилек, чем хозяйка кроссовок. Например, если надавить лезвием острого ножа на помидор или морковь, овощ будет разрезан пополам. Площадь поверхности лезвия, соприкасающаяся с овощем, мала, поэтому давление достаточно велико, чтобы разрезать этот овощ. Если же надавить с той же силой на помидор или морковь тупым ножом, то, скорее всего, овощ не разрежется, так как площадь поверхности ножа теперь больше, а значит давление — меньше.

В системе СИ давление измеряется в паскалях, или ньютонах на квадратный метр.

Подытожим

Нужно сказать несколько слов об «иностранцах» в нашей таблице — измерениях «psi» и «psf».

Pounds scuare feet (psf) — это фунты на квадратный фут; ими, так же как и «psi» (pounds scuare inches) — фунтами на квадратный дюйм, может измеряться давление при описании в англоязычных источниках. Так, к примеру, один кгс/ см2 примерно равен 14 psi.

А на этом видео конкретным примером доступно проиллюстрировано, как перевести одну единицу в иную в рамках системы СИ:

Углубившись в тему, вскоре вы научитесь сами переводить не только МПа в килограмм с/см2, но и совершать обратный перевод, т.е. обращать килограмм с/см2 в МПа.

Перевод единиц

На самом деле перевод между атм и PSI не вызывает каких-то больших сложностей. Быть гением математики и проводить сложнейшие исчисления в этом случае нет никакой необходимости.

Если вы хотите обеспечить правильное давление в шинах, но при этом не понимаете, сколько атмосфер соответствуют PSI, можно воспользоваться одним простым правилом.

Предположим, у вас в технической документации указаны единицы PSI, но давление в шинах можно создать, опираясь на манометр с единицей измерения бар. Всё элементарно. Вы берёте PSI, которые указал в регламенте автопроизводитель, и делите их на 14.

Предположим, вы точно знаете, сколько PSI по техническому регламенту должно быть в правильно накаченных шинах вашего автомобиля. В документации указано, что покрышки следует накачать до 26 PSI. Просто 26 делите на 14, и получаете требуемое значение. В итоге у нас на выходе 1,8 атмосфер или бар. Между последними двумя единицами принципиальной разницы нет.

Как известно, для множества автомобилей давление на уровне 1,8 атм является вполне нормальным и достаточно распространённым.

Руководствуясь этим принципом, вы легко сможете быстро определить, поскольку по системе PSI должно быть в ваших шинах автомобиля, чтобы гарантировать правильное и оптимальное поведение машины.

Если требуется более точное измерение, что для автомобилистов вряд ли необходимо, тогда вам на помощь придёт соответствующая таблица давления. В ней наглядно показано, какому количеству атмосфер или бар соответствует PSI, и наоборот. Но для поддержания давления в шинах обычно достаточно просто разделить давление по дюймовой системе на 14. И всё сразу станет понятно и очевидно.

Острой необходимости в том, чтобы постоянно сидеть с калькулятором, что-то умножать или делить в столбик, вовсе нет. Если вы владеете одним автомобилем, постоянно его эксплуатируете, но в рекомендациях прописаны значения PSI, тогда будет достаточно один раз сделать расчёт, перевести значения в бары или атмосферы и продолжить спокойную эксплуатацию.

Покупать новый манометр, выбрасывать свой старый измерительный прибор, где указаны атм или бар, не нужно. Для удобства можете после подсчёта свериться с таблицей, после чего на внутренней поверхности лючка бензобака несмываемым маркером написать, какое же давление у вас должно быть в покрышках. Только в уже привычных единицах измерения.

Это будет своего рода памяткой на всё оставшееся время, пока вы ездите на этом автомобиле, не перешли на новые покрышки, которые отличаются от регламентированных, и для них может потребоваться уже несколько иное давление.

Помните только, что автопроизводитель может рекомендовать использовать разное давление в колёсах в зависимости от сезона эксплуатации транспортного средства. В тёплое время года значения обычно выше, а вот на зиму требуется сделать шины более мягкими, обеспечить большее пятно контакта с поверхности и добиться лучшего сцепления.

На практике единицы измерения давления в виде PSI не должны вызывать никаких проблем и паники. Берёте эту цифру, делите её на 14, и всё, теперь вы видите, каким должно быть давление в барах или атмосферах.

Как пользоваться онлайн-калькулятором?

Описание функционала калькулятора

  1. Левая колонка калькулятора. Содержит выборку исходных величин. Под каждым столбцом отображается точное техническое описание величины.
  2. Правая колонка калькулятора. Содержит конечную величину перевода. Под каждым столбцом есть подробное описание конечной величины перевода.
  3. Получение результатов. Для того, чтобы перевести мпа в паскали, введите значения исходной величины. Онлайн-калькулятор оперативно переведет исходные данные.

Для перевода чрезвычайно больших и малых чисел, применяется отдельное понятие: компьютерная экспоненциальная запись. Используя данный метод, можно записать числа с высоким сопутствующим сокращением.

Для кого разработан онлайн-калькулятор

  1. Для специалистов, которые проводят научные исследования. Вы можете без труда перевести, к примеру, бар в торр.
  2. Для владельцев транспортных средств. Очень часто нужно, например, перевести МПа в бары. Эти данные используются для анализа состояния топливной магистрали, а также для проверки номинального давления в шинах автомобиля.
  3. Автовладельцы используют калькулятор при переводе отдельного значения в МПа в процессе заправки деталей авто фреоном.

Давление в геологии

Кристалл кварца, освещенный лазерной указкой

Давление — важное понятие в геологии. Без давления невозможно формирование драгоценных камней, как природных, так и искусственных

Высокое давление и высокая температура необходимы также и для образования нефти из остатков растений и животных. В отличие от драгоценных камней, в основном образующихся в горных породах, нефть формируется на дне рек, озер, или морей. Со временем над этими остатками собирается всё больше и больше песка. Вес воды и песка давит на остатки животных и растительных организмов. Со временем этот органический материал погружается глубже и глубже в землю, достигая нескольких километров под поверхностью земли. Температура увеличивается на 25 °C с погружением на каждый километр под земной поверхностью, поэтому на глубине нескольких километров температура достигает 50–80 °C. В зависимости от температуры и перепада температур в среде формирования, вместо нефти может образоваться природный газ.

Алмазные инструменты

Природные драгоценные камни

Образование драгоценных камней не всегда одинаково, но давление — это одна из главных составных частей этого процесса. К примеру, алмазы образуются в мантии Земли, в условиях высокого давления и высокой температуры. Во время вулканических извержений алмазы перемещаются в верхние слои поверхности Земли благодаря магме. Некоторые алмазы попадают на Землю с метеоритов, и ученые считают, что они образовались на планетах, похожих на Землю.

Синтетические драгоценные камни

Производство синтетических драгоценных камней началось в 1950-х годах, и набирает популярность в последнее время. Некоторые покупатели предпочитают природные драгоценные камни, но искусственные камни становятся все более и более популярными, благодаря низкой цене и отсутствию проблем, связанных с добычей натуральных драгоценных камней. Так, многие покупатели выбирают синтетические драгоценные камни потому, что их добыча и продажа не связана с нарушением прав человека, детским трудом и финансированием войн и вооруженных конфликтов.

Одна из технологий выращивания алмазов в лабораторных условиях — метод выращивания кристаллов при высоком давлении и высокой температуре. В специальных устройствах углерод нагревают до 1000 °C и подвергают давлению около 5 гигапаскалей. Обычно в качестве кристалла-затравки используют маленький алмаз, а для углеродной основы применяют графит. Из него и растет новый алмаз. Это самый распространенный метод выращивания алмазов, особенно в качестве драгоценных камней, благодаря низкой себестоимости. Свойства алмазов, выращенных таким способом, такие же или лучше, чем свойства натуральных камней. Качество синтетических алмазов зависит от метода их выращивания. По сравнению с натуральными алмазами, которые чаще всего прозрачны, большинство искусственных алмазов окрашено.

Благодаря их твердости, алмазы широко используются на производстве. Помимо этого ценятся их высокая теплопроводность, оптические свойства и стойкость к щелочам и кислотам. Режущие инструменты часто покрывают алмазной пылью, которую также используют в абразивных веществах и материалах. Большая часть алмазов в производстве — искусственного происхождения из-за низкой цены и потому, что спрос на такие алмазы превышает возможности добывать их в природе.

Некоторые компании предлагают услуги по созданию мемориальных алмазов из праха усопших. Для этого после кремации прах очищается, пока не получится углерод, и затем на его основе выращивают алмаз. Изготовители рекламируют эти алмазы как память об ушедших, и их услуги пользуются популярностью, особенно в странах с большим процентом материально обеспеченных граждан, например в США и Японии.

Метод выращивания кристаллов при высоком давлении и высокой температуре

Метод выращивания кристаллов при высоком давлении и высокой температуре в основном используется для синтеза алмазов, но с недавнего времени этот метод помогает усовершенствовать натуральные алмазы или изменить их цвет. Для искусственного выращивания алмазов используют разные прессы. Самый дорогой в обслуживании и самый сложный из них — это пресс кубического типа. Он используется в основном для улучшения или изменения цвета натуральных алмазов. Алмазы растут в прессе со скоростью примерно 0,5 карата в сутки.

Автор статьи: Kateryna Yuri

Unit Converter articles were edited and illustrated by Анатолий Золотков

Atmospheric Pressure

Atmospheric or air pressure is the pressure of air in a given environment. It usually refers to the weight of the column of atmospheric air above the unit surface area. Atmospheric pressure affects weather and temperature. Considerable changes in the atmospheric pressure cause discomfort for people and animals. The decrease in atmospheric pressure can cause psychological and physical discomfort for people and animals, or even death. For this reason, airplane cabins, which would otherwise experience low air pressure at cruising heights, are artificially pressurized.

The aneroid pressure gauge is based on a pressure sensor — a set of metallic bellows, which change their shape in response to the pressure, which, in turn, rotates the needle by a linkage connected to the bellows

Atmospheric pressure decreases with the increase in altitude. People and animals, who live at high altitudes, for example in the Himalayas, adapt to the low pressure. Travelers, on the other hand, often need to take precautionary measures to avoid discomfort. Some people, such as mountaineers, are affected by altitude sickness, caused by oxygen deficiency in the blood. This condition can become chronic with prolonged exposure. It typically happens at altitudes above 2,400 meters. In severe cases, people may be affected by high altitude cerebral or pulmonary edema. To prevent altitude-related health problems, medical professionals recommend avoiding depressants such as alcohol and sleeping pills, and also to hydrate well, and to ascend to higher altitudes at a slow pace, for example on foot, instead of using transportation. Additional recommendations include a diet high in carbohydrates, and resting well, especially for individuals who ascended quickly. This will allow the body to combat the oxygen shortage, which results from low atmospheric pressure, by producing more red blood cells to carry oxygen, and by increasing heart and respiratory rates, among other adaptations.

Emergency treatment for severe altitude sickness has to be provided immediately. It is paramount to bring the patient to lower altitudes where the pressure is higher, preferably to the altitude below 2400 meters above the sea level. Treatment also includes medication and use of the Gamow Bag. It is a portable light-weight container that can be pressurized by using a foot pump. The patient is put inside this bag to simulate lower altitudes. This is an emergency treatment and the patient still needs to be transported to lower altitudes.

Low atmospheric pressure is also used by athletes, who sleep in simulated high-altitude environments but exercise in normal conditions. This helps their bodies to adapt to high altitudes and start producing greater amounts of red blood cells, which, in turn, increases the amount of oxygen carried through their body, and enhances their athletic abilities. For this purpose athletes often use altitude tents or canopies, which have low atmospheric pressure inside.

Перевод значений давления из PSI в Атмосферы

Непонятными для российского человека единицами измерения пользуются не только в Америке, но и во многих странах Европы, если перевести 1 PSI в Бары, то получится число 0,068046. Чтобы было понятнее, проще определить соотношение одного числа к другому – получается, что один килограмм на сантиметр квадратный в 14,504 раз больше, чем фунт-сила/дюйм². Для простоты расчетов чаще всего берется соотношение 1/14, в таком случае уже легче посчитать получившийся результат. Например, манометр показал 50 PSI, получаем делением примерно 3,57 кг/см² в привычном для нас стандарте, соответственно, 100 PSI будет в два раза больше, равняться примерно семи Атмосферам.

Пользоваться системой измерения с фунтами на дюйм квадратный приходится поневоле, ведь даже рекомендуемое давление в шинах на многих иномарках указывается именно в этих единицах. Также часто буквы PSI указываются на импортных шинных компрессорах, и в основном они встречаются на продукции китайского производства, хотя нередко манометры имеют сразу несколько шкал.

0…1,000 psi to bar Conversion

psi pressure related products

  • Contaminated groundwater submersible plastic body 5 psi pressure transducer & display
  • Low operating temperature plus/minus 1 psi pressure transmitter
  • 300 F protected 100 psi pressure transmitter
  • Dust ATEX approved 2 psi pressure transmitter

Request product info for a psi unit range pressure measurement device.

Enter a pressure in psi below to convert it to the equivalent pressure in bar.

Sorry, a graphic could not be displayed here, because your browser does not support HTML5 Canvas. bar pressure related products

  • Hydraulic puller-tensioner bar pressure to kilonewton load HMI display & logger
  • Dirty water, sludge & sewerage tank level 400 mbar pressure sensor
  • 200 bar pressure sensor to interface with Arduino board
  • Anaerobic digestion methane gas 2bar pressure transmitter

Request product info for a bar unit range pressure measurement device.

Choose a value between 0 and 1000 psi from the pressure conversion table below, to obtain the converted value in bar.

Атмосферное давление

Атмосферное давление — это давление воздуха в данном месте. Обычно оно обозначает давление столба воздуха на единицу площади поверхности. Изменение в атмосферном давлении влияет на погоду и температуру воздуха. Люди и животные страдают от сильных перепадов давления. Пониженное давление вызывает у людей и животных проблемы разной степени тяжести, от психического и физического дискомфорта до заболеваний с летальным исходом. По этой причине, в кабинах самолетов поддерживается давление выше атмосферного на данной высоте, потому что атмосферное давление на крейсерской высоте полета слишком низкое.

Анероид содержит датчик — цилиндрическую гофрированную коробку (сильфон), связанную со стрелкой, которая поворачивается при повышении или понижении давления и, соответственно, сжатия или расширения сильфона

Атмосферное давление понижается с высотой. Люди и животные, живущие высоко в горах, например в Гималаях, адаптируются к таким условиям

Путешественники, напротив, должны принять необходимые меры предосторожности, чтобы не заболеть из-за того, что организм не привык к такому низкому давлению. Альпинисты, например, могут заболеть высотной болезнью, связанной с недостатком кислорода в крови и кислородным голоданием организма

Это заболевание особенно опасно, если находиться в горах длительное время. Обострение высотной болезни ведет к серьезным осложнениям, таким как острая горная болезнь, высокогорный отек легких, высокогорный отек головного мозга и острейшая форма горной болезни. Опасность высотной и горной болезней начинается на высоте 2400 метров над уровнем моря. Во избежание высотной болезни доктора советуют не употреблять депрессанты, такие как алкоголь и снотворное, пить много жидкости, и подниматься на высоту постепенно, например, пешком, а не на транспорте. Также полезно есть большое количество углеводов, и хорошо отдыхать, особенно если подъем в гору произошел быстро. Эти меры позволят организму привыкнуть к кислородной недостаточности, вызванной низким атмосферным давлением. Если следовать этим рекомендациям, то организму сможет вырабатывать больше красных кровяных телец для транспортировки кислорода к мозгу и внутренним органам. Для этого организм увеличат пульс и частоту дыхания.

Первая медицинская помощь в таких случаях оказывается немедленно

Важно переместить больного на более низкую высоту, где атмосферное давление выше, желательно на высоту ниже, чем 2400 метров над уровнем моря. Также используются лекарства и портативные гипербарические камеры

Это легкие переносные камеры, в которых можно повысить давление с помощью ножного насоса. Больного горной болезнью кладут в такую камеру, в которой поддерживается давление, соответствующее более низкой высоте над уровнем моря. Такая камера используется только для оказания первой медицинской помощи, после чего больного необходимо спустить ниже.

Некоторые спортсмены используют низкое давление, чтобы улучшить кровообращение. Обычно для этого тренировки проходят в нормальных условиях, а спят эти спортсмены в среде с низким давлением. Таким образом, их организм привыкает к высокогорным условиям и начинает вырабатывать больше красных кровяных телец, что, в свою очередь, повышает количество кислорода в крови, и позволяет достичь более высоких результатов в спорте. Для этого выпускаются специальные палатки, давление в которых регулируются. Некоторые спортсмены даже изменяют давление во всей спальне, но герметизация спальни — дорогостоящий процесс.

Гидростатическое давление

Гидростатическое давление — это давление жидкости, вызванное силой тяжести. Это явление играет огромную роль не только в технике и физике, но также и в медицине. Например, кровяное давление — это гидростатическое давление крови на стенки кровеносных сосудов. Кровяное давление — это давление в артериях. Оно представлено двумя величинами: систолическим, или наибольшим давлением, и диастолическим, или наименьшим давлением во время сердцебиения. Приборы для измерения артериального давления называются сфигмоманометрами или тонометрами. За единицу артериального давления приняты миллиметры ртутного столба.

Цифровой аппарат для измерения давления, также называемый сфигмоманометром

Кружка Пифагора — занимательный сосуд, использующий гидростатическое давление, а конкретно — принцип сифона. Согласно легенде, Пифагор изобрел эту чашку, чтобы контролировать количество выпитого вина. По другим источникам эта чашка должна была контролировать количество выпитой воды во время засухи. Внутри кружки находится изогнутая П-образная трубка, спрятанная под куполом. Один конец трубки длиннее, и заканчивается отверстием в ножке кружки. Другой, более короткий конец, соединен отверстием с внутренним дном кружки, чтобы вода в чашке наполняла трубку. Принцип работы кружки схож с работой современного туалетного бачка. Если уровень жидкости становится выше уровня трубки, жидкость перетекает во вторую половину трубки и вытекает наружу, благодаря гидростатическому давлению. Если уровень, наоборот, ниже, то кружкой можно спокойно пользоваться.

Про отопительные котлы

Если честно, то все это рассуждение я начал ради отопительного котла, именно в современных моделях которым в своей системе нужно давление, имеют индикаторы сбоку или на цифровом дисплее.

«Зачем оно нужно?» — спросите вы. ДА все просто ребята, в современных котлах есть насос который гоняет воду по системе, и чем больше давление чем ему проще это делать! Вот почему если оно падает до минимального уровня (обычно ниже 0,9 БАР), котел автоматически отключается – работать не будет.

То есть, чтобы ему нормально функционировать, нужно следить за «барами». Однако «борщить» также не стоит — если довести давление больше 2,7 БАР, то котел также отключиться (сработает защита), потому как теплообменники сделаны из меди или латуни — а это мягкий материал, его просто может разорвать! Поэтому установлены системы сброса лишнего давления.

Вот почему в обязательном порядке выносят датчик с показателем.

Ух, большая статья получилась, старался по максимуму раскрыть тему. Думаю получилось.

Часто задаваемые вопросы

1 бар сколько атмосфер?

Чтобы получить приблизительный результат сколько атмосфер в одном баре необходимо разделить значение давления на коэффициент 1,013. То есть 1 бар это 0,98 атмосферы

. Поэтому при конвертировании одной единицы измерения небольшого давления (до 10 бар) в другую, принято считать, что 1 bar ≈ 1 atm. Такое соотношение при расчетах даст погрешность, не превышающую 2%.

1 МПа сколько бар?

Чтобы узнать сколько в одном мегапаскале бар, достаточно умножить значение давления, выраженного в Мпа, на 10. То есть 1 Мпа = 10 bar

.

1 МПа сколько КГС см2?

Для конверсии одного МегаПаскаля в значение давления выраженного в килограмм-силы на квадратный сантиметр, достаточно значение МПа умножить на 10,197. Таким образом 1 МПа = 10,197 кГс/м²

.

КГС сколько атмосфер?

При конверсии кгс/см2 в атм необходимо значение давления, выраженного в КГС см2 разделить на 1,033. Используя такое соотношение можно конвертировать любое значение давления выраженного в килограммах силы на атмосферы.

Источник

Ртуть, вода, вино…

Земля окружена слоем воздуха, состоящим из смеси газов. Этот воздушный слой именуется атмосферой. Находящиеся на Земле объекты подвержены атмосферному влиянию.

Э. Торичелли (1608 — 1647 гг.) первым придумал метод его измерения.

Спустя 3 года после того, как был сделан ртутный барометр, великий Б. Паскаль сконструировал водяной барометр. Учёный повторил опыт, заменив ртуть водой. Но этого ему показалось мало. Он продолжал опыты с маслом, вином и… кто знает, сколько жидкостей утекло за время исследований!

Есть множество единиц измерения давления:

  • Па — паскаль (и его производные: МПа (мегапаскаль), кПа (килопаскаль)
  • бар
  • атмосфера
  • миллиметры ртутного столба
  • дюймы ртутного столба
  • миллиметры водного столба
  • дюймы водного столба
  • килограмм cилы на см2 (кГс/см2)
  • psf
  • psi
  • метры водного столба

Русское и европейское обозначение давления

Атмосферное давление (Атм) показывает силу воздушного столба на единицу площади поверхности. Символом данной физической величины является 1 Атм, или 1 кгс/м2. Для камер различного диаметра рекомендованное давление будет значительно отличаться.

Мы привыкли измерять данную величину в атмосферах (Атм), однако, в европейских странах для обозначения давления применяют символ «PSI». Таким образом, Пси — это альтернатива привычным атмосферам. Если вы на компрессоре увидели «300 PSI»,- речь идет не о марке продукции, а о давлении. Теперь предстоит сделать перевод PSI в атмосферы.

Разбираемся с символами

В европейских странах эта величина исчисляется фунтами на дюйм в квадрате. Ни дюймов, ни фунтов россияне не знают. Чтобы облегчить решение этой задачи, воспользуемся привычными Барами. Единица давления и тяжести Бар соответствует единице технической атмосферы, или 14 Пси. То есть, 14 Пси будет равно 1 Бар

или одной атмосфере.

Если в инструкции к машине указано рекомендуемое давление 30 Пси, значит, необходимо число 30 разделить на 14. В результате мы получим приблизительно 2 Атм. Используя данную расчетную формулу перевода PSI в атмосферы, вы всегда сможете узнать точную величину в привычных единицах.

Паскаль

Итак, паскаль (Па) – мера давления, механического напряжения, модуля упругости и некоторых других характеристик, используемых в технике. Давление в 1 паскаль создает сила величиной 1 ньютон, однородно распределенная по площади 1 квадратный метр, перпендикулярной направлению ее действия (1 Па = 1 Н/м 2). Вспомнив, что 1 Н = 1 кг∙м/с 2 , можно выразить паскаль через основные единицы СИ: 1 Па = 1 кг/(м∙с 2).

Давление относится к скалярным величинам, оно характеризует результат воздействия внешней силы на поверхность, распределенной по ее площади. Поясним это на примере: представим себе человека, который сначала перемещается по рыхлому снегу на лыжах, а затем снимает их и проваливается вглубь сугроба. В первом случае сила – вес человека – равномерно распределена по относительно большой поверхности лыж, в другом – только по площади стопы, что приводит к возрастанию давления, а следовательно, и к проседанию снега.

Внешние силы, действуя на тело, стремятся сместить положение частиц, из которых оно состоит. В ответ на это внутри тела будут возникать внутренние силы, препятствующие смещению. Мера результата их действия называется механическим напряжением, которое также выражается в паскалях.

Атмосфера единица измерения давления. Использование конвертера «Конвертер давления, механического напряжения, модуля Юнга. Подробный список единиц давления, один паскаль это

Физика объясняет давление как силу, которая действует на единицу поверхности площади. При воздействии двух одинаковых сил на разные поверхности большей из них будет та, что действует на меньшую площадь. Лезвие острого ножа при давлении на овощ разрежет его, а под воздействием тупого предмета овощ останется целым.

Вконтакте

Определение атмосферного давления

Под этим определением понимают воздействие воздуха на определённое место, а именно: столба воздуха на поверхность . Его изменения имеют влияние на погодные условия и температуру воздуха, а также на состояние здоровья людей и животных. Слишком низкий его уровень приводит к физическому и психическому дискомфорту, при ослабленном организме - к серьёзным заболеваниям и летальному исходу.

Давление атмосферы снижается с увеличением высоты . Поэтому в кабинах самолётов специально поддерживают уровень выше того, который за бортом. Люди и животные, проживающие в горной местности, адаптируются к подобным условиям, но путешественникам стоит принять все меры предосторожности для того, чтобы не заболеть высотной болезнью.

Внесистемная единица измерения

Атмосфера считается внесистемной единицей измерения . Одна атмосфера соответствует давлению на уровне мирового океана. Существует два типа этой единицы измерения:

  • физическая (нормальная или стандартная) атмосфера, краткое обозначение которой - атм;
  • техническая - ат.

Используют эту величину для измерения равномерного перпендикулярного воздействия силы на ровную поверхность. Одна стандартная атмосфера - это давление ртутного столба, высота которого 760 миллиметров , при нулевой температуре и плотности ртути, равной 13 595,04 килограмма на кубический метр.

Приставки «ата» и «ати» использовали раньше для обозначения абсолютных и избыточных показателей. В том случае, когда атмосферное давление меньше абсолютного, рассчитывали разницу, которая и является избытком. Разрежение, или вакуум, - это разница, которую рассчитывают тогда, когда уровень атмосферного давления выше показателя абсолютного.

Общие сведения о паскалях

Такую величину, как паскаль, используют для измерения атмосферной силы, действие которой распространяется строго перпендикулярно на единицу поверхности. Сила в один ньютон на площадь в один метр квадратный равна одному паскалю. Эти цифры указывают на довольно маленькое атмосферное давление, поэтому полученные измерения указывают в мегапаскалях (МПа) или килопаскалях (кПа).

разных сферах деятельности измеряется в различных величинах . К примеру, при его измерении в автомобилях могут указываться такие величины:
  • атмосферы;
  • бары;
  • фунты на один квадратный дюйм;
  • мегапаскали;
  • килограмм силы на один квадратный сантиметр - техническая атмосфера.

Паскаль принадлежит к Международной системе единиц (СИ) и используется также для измерения модулей упругости, предела текучести, механического напряжения, фугитивности, предела пропорциональности, осмотического и звукового давления, сопротивления разрыву и срезу, модуля Юнга.

Размерности единиц измерения этой величины и энергии совпадают, но они описывают разные физические свойства объектов, а значит, не могут считаться эквивалентными. Поэтому паскали не используют как единицу измерения плотности энергии, а давление не измеряют в джоулях.

Общими правилами Международной системы единиц установлено то, что со строчной буквы пишется наименование единицы паскаль, а с заглавной - её обозначение. Это правило сохраняется и при написании других единиц измерения, образованных с использованием паскаля. Впервые об этой величине стало известно во Франции в 1961 году благодаря математику и физику Блезу Паскалю, в честь которого она и была названа.

Мегапаскали

Мегапаскалем называют единицу измерения атмосферного столба, которая кратна паскалю . Для того чтобы перевести мегапаскали в атмосферы, чаще всего используют специальные калькуляторы, многие из которых работают в режиме онлайн.

Один мегапаскаль - это одна тысяча килопаскалей , что, в свою очередь, составляет один миллион паскалей. Сколько атмосфер тогда содержится в мегапаскале? Если точно переводить эти величины, то один мегапаскаль составляет 10,197 ат и 9,8692 атм - технические и физические атмосферы соответственно.

При решении физических задач редко проводят точные вычисления, поэтому стандартную 1 атмосферу в мегапаскалях принимают за 0,1 МПа, а физическую - за 0,987 МПа (при обратном расчёте 1 МПа - это 10 технических атмосфер и 9,87 физических). При этом один миллиметр водного столба равен около 10 Па, ртутного столба - 133 Па. Нормальный показатель - 760 миллиметров ртутного столба - равняется 101 325 паскалей или 101 килопаскалей.

Существуют две примерно равные друг другу единицы с таким названием:

  1. Стандартная , нормальная или физическая атмосфера (атм , atm , ата ) - в точности равна 101 325 Па или 760 . Давление, уравновешиваемое столбом ртути высотой 760 мм при 0 °C, плотность ртути 13595,1 кг/м³ и нормальное ускорение свободного падения 9,80665 м/с².
  2. Техническая атмосфера (ат , at , кг*с/см² , ати ) - равна давлению, производимому силой от массы в 1 кг при действии на неё ускорения g (т. е. 1 килограмм-сила , кгс), направленной перпендикулярно и равномерно распределённой по плоской поверхности площадью 1 см² (98 066,5 Па).

Ранее использовались также обозначения ата и ати для абсолютного и избыточного давления соответственно (выраженного в технических атмосферах). Избыточное давление могло быть и отрицательным.

Литература

  • Краткий словарь физических терминов / Сост. А. И. Болсун, рец. М. А. Ельяшевич. - Мн. : Высшая школа, 1979. - 416 с. - 30 000 экз.

Ссылки

Таблица перевода единиц измерения давления

Единица измерения Па кПа МПа кгс/м 2 кгс/см 2 мм рт.ст. мм вод.ст. бар
1 Паскаль 1 10 -3 10 -6 0,1019716 10,19716*10 -6 0,00750062 0,1019716 0,00001
1 Килопаскаль 1000 1 10 -3 101,9716 0,01019716 7,50062 101,9716 0,01
1 Мегапаскаль 1000000 1000 1 101971,6 10,19716 7500,62 101971,6 10
1 Килограмм-сила на квадратный метр 9,80665 9,80665*10 -3 9,80665*10 -6 1 0,0001 0,0735559 1 98,0665*10 -6
1 Килограмм-сила на квадратный сантиметр 98066,5 98,0665 0,0980665 10000 1 735,559 10000 0,980665
1 Миллиметр ртутного столба (при 0 град) 133,3224 0,1223224 0,0001333224 13,5951 0,00135951 1 13,5951 0,00133224
1 Миллиметр водяного столба (при 0 град) 9,80665 9,807750*10 -3 9,80665*10 -6 1 0,0001 0,0735559 1 98,0665*10 -6
1 Бар 100000 100 0,1 10197,16 1,019716 750,062 10197,16 1

Соотношение между некоторыми единицами измерения:

Бар:
1 бар = 0.1 МПа
1 бар = 100 кПа
1 бар = 1000 мбар
1 бар = 1.019716 кгс/см2
1 бар = 750 мм.рт.ст.(торр)
1 бар = 10197.16 кгс/м2 (атм.тех.)
1 бар = 10197.16 мм. вод. ст.
1 бар = 0.98692326672 атм. физ.
1 бар = 10 Н/см2
1 бар = 1000000 дин /см2=106 дин/см2
1 бар = 14.50377 psi (фунт на квадратный дюйм)
1 мбар = 0.1 кПа
1 мбар = 0.75 мм. рт. ст.(торр)
1 мбар = 10.19716 кгс/ м2
1 мбар = 10.19716 мм. вод. ст.
1 мбар = 0.401463 in.h3O (дюйм водяного столба)

КГС/СМ2 (АТМ.ТЕХ.):
1 кгс/см2 = 0.0980665 МПа
1 кгс/см2 = 98.0665 кПа
1 кгс/см2 = 0.980665 бар
1 кгс/см2 = 980.665 мбар
1 кгс/см2 = 736 мм.рт.ст. (торр)
1 кгс/см2 = 10000 мм.вод.ст.
1 кгс/см2 = 0.968 атм. физ.
1 кгс/см2 = 14.22334 psi
1 кгс/см2 = 9.80665 Н/см2
1 кгс/см2 = 98066.5 Н/м2
1 кгс/см2 = 10000 кгс/м2
1 кгс/см2 = 0,01 кгс/мм2


МПа:
1 МПа = 1000000 Па
1 МПа = 1000 кПа
1 МПа = 10.19716 кгс/см2 (атм.тех.)
1 МПа = 10 бар
1 МПа = 7500 мм. рт. ст.(торр)
1 МПа = 101971.6 мм. вод. ст.
1 МПа = 101971.6 кгс /м2
1 МПа = 9.87 атм. физ.
1 МПа = 106 Н/м2
1 МПа = 107 дин/см2
1 МПа = 145.0377 psi
1 МПа = 4014.63 in.h3О

ММ.РТ.СТ. (ТОРР)
1 мм.рт.ст. = 133.3 10-6 МПа
1 мм.рт.ст. = 0.1333 кПа
1 мм.рт.ст. = 133.3 Па
1 мм.рт.ст. = 13.6 10-4 кгс/см2
1 мм.рт.ст. = 13.33 10-4 бар
1 мм.рт.ст. = 1.333 мбар
1 мм.рт.ст. = 13.6 мм.вод.ст.
1 мм.рт.ст. = 13.16 10-4 атм. физ.
1 мм.рт.ст. = 13.6 кгс/м2
1 мм.рт.ст. = 0.019325 psi
1 мм.рт.ст. = 75.051 Н/см2

кПа:
1 кПа = 1000 Па
1 кПа = 0.001 МПа
1 кПа = 0.01019716 кгс/см2
1 кПа = 0.01 бар
1 кПа = 7.5 мм. рт. ст.(торр)
1 кПа = 101.9716 кгс/м2
1 кПа = 0.00987 атм. физ.
1 кПа = 1000 Н/м2
1 кПа =10000 дин/см2
1 кПа = 10 мбар
1 кПа =101.9716 мм. вод. ст.
1 кПа = 4.01463 in.h3O
1 кПа = 0.1450377 psi
1 кПа = 0.1 Н/см2

ММ.ВОД.СТ.(КГС/М2):
1 мм.вод.ст. = 9.80665 10 -6 МПа
1 мм.вод.ст. = 9.80665 10 -3 кПа
1 мм.вод.ст. = 0.980665 10-4 бар
1 мм.вод.ст. = 0.0980665 мбар
1 мм.вод.ст. = 0.968 10-4 атм.физ.
1 мм.вод.ст. = 0.0736 мм.рт.ст.(торр)
1 мм.вод.ст. = 0.0001 кгс/см2
1 мм.вод.ст. = 9.80665 Па
1 мм.вод.ст. = 9.80665 10-4 Н/см2
1 мм.вод.ст. = 703.7516 psi

Мы намеренно не предлагаем Вам воспользоваться автоматическим конвертером для достижения мгновенного машинного результата, но мы предлагаем Пользователям ознакомиться со справочной информацией, которая, возможно, поможет понимать смысл и механизм перевода единиц измерения давления, и позволит научиться самостоятельно пересчитывать исходные данные в требуемые. Мы убеждены, что такие навыки для инженера будут полезнее машинных расчётов и могут оказаться эффективнее на практике в будущем. На производстве иногда бывает нужно быстро сориентироваться в ситуации, а для этого нужно иметь представление о соотношении между собой основных единиц измерения. Например, несколько лет назад Россия в метрологии "перешла" с одних базовых единиц измерения давления на другие, поэтому стало актуально уметь самостоятельно быстро делать преобразование значений из кгс/см2 в МПа, кгс/см2 в кПа. Запомнив, сколько кгс/см2 или кПа в 1 МПа, перевод значений можно легко осуществить "в уме" без посторонней помощи, которая на практике может оказаться недоступной в ответственный момент.

Единицы давления
Паскаль
(Pa, Па)
Бар
(bar, бар)
Техническая атмосфера
(at, ат)
Физическая атмосфера
(atm, атм)

(мм рт.ст.,mmHg, Torr, торр)
Метр водяного столба
(м вод. ст.,m H 2 O)
Фунт-сила
на кв. дюйм
(psi)
1 Па 1 / 2 10 −5 10,197·10 −6 9,8692·10 −6 7,5006·10 −3 1,0197·10 −4 145,04·10 −6
1 бар 10 5 1·10 6 дин /см 2 1,0197 0,98692 750,06 10,197 14,504
1 ат 98066,5 0,980665 1 кгс /см 2 0,96784 735,56 10 14,223
1 атм 101325 1,01325 1,033 1 атм 760 10,33 14,696
1 мм рт.ст. 133,322 1,3332·10 −3 1,3595·10 −3 1,3158·10 −3 1 мм рт.ст. 13,595·10 −3 19,337·10 −3
1 м вод. ст. 9806,65 9,80665·10 −2 0,1 0,096784 73,556 1 м вод. ст. 1,4223
1 psi 6894,76 68,948·10 −3 70,307·10 −3 68,046·10 −3 51,715 0,70307 1 lbf/in 2

Wikimedia Foundation . 2010 .

Смотреть что такое "Атмосфера (единица измерения)" в других словарях:

    У этого термина существуют и другие значения, см. Бар (значения). Бар (греч. βάρος тяжесть) внесистемная единица измерения давления, примерно равная одной атмосфере. Один бар равен 105 Па или 106 дин/см² (в системе СГС). В прошлом… … Википедия

    У этого термина существуют и другие значения, см. Паскаль (значения). Паскаль (обозначение: Па, международное: Pa) единица измерения давления (механического напряжения) в Международной системе единиц (СИ). Паскаль равен давлению… … Википедия

    Манометр, с показаниями в psi (красная шкала) и kPa (чёрная шкала) Psi (lb.p.sq.in.) внесистемная единица измерения давления «фунт сила на квадратный дюйм» (англ. pound force per square inch, lbf/in²). В основном употребляется в США, численно… … Википедия

    - – единица измерения давления напр. в шинах. EdwART. Словарь автомобильного жаргона, 2009 … Автомобильный словарь

    В Викисловаре есть статья «атмосфера» Атмосфера (от. греч … Википедия

    - (греч. atmosphaira, от atmos пар, и sphaira шар, сфера). 1) Газообразная оболочка, окружающая землю или другую планету. 2) умственная среда, в которой кто либо вращается. 3) единица, которою измеряется давление, испытываемое или производимое… … Словарь иностранных слов русского языка

    АТМОСФЕРА - Земли (от греч. atmos пар и sphaira шар), газовая оболочка Земли, связанная с ней силой тяжести и принимающая участие в ее суточном и годовом вращении. Атмосфера. Схема строения атмосферы Земли (по Рябчикову). Масса А. ок. 5,15 10 8 кг.… … Экологический словарь

    атмосфера - (неправильно атмосфера; встречается в профессиональной речи в знач. «единица измерения давления») … Словарь трудностей произношения и ударения в современном русском языке

    - (Atmosphere) 1. Воздушная оболочка земного шара, в которой совершается непрерывная смена разнообразных процессов и явлений. 2. Единица измерения давления, равная среднему атмосферному давлению на уровне моря, т. е. давлению ртутного столба… … Морской словарь

    Ы; ж. [греч. atmos дыхание и sphaira шар]. 1. Газообразная оболочка небесных тел, движущаяся с ними как единое целое. А. Земли, Венеры. // Об околоземном воздушном пространстве. Загрязнять атмосферу. Космический корабль вошёл в плотные слои… … Энциклопедический словарь

  • Поправка коэффициента рк значению температуры воздуха
  • 5. Методы измерения температуры воздуха и оценки температурных условий
  • 5.2. Изучение температурных условий
  • Результаты изучения температурных условий в учебной аудитории
  • 6. Гигиеническое значение, методы измерения и оценки влажности воздуха
  • 6.1. Гигиеническое значение и оценка влажности воздуха
  • Максимальное напряжение водяных паров при разных температурах воздуха,
  • Максимальное напряжение водяных паров надо льдом при температурах ниже 0о,
  • 6.2. Измерение влажности воздуха
  • Величины психрометрических коэффициентов а в зависимости от скорости движения воздуха
  • (При скорости движения воздуха 0,2 м/с)
  • 7. Гигиеническое значение, методы измерения и оценки направления и скорости движения воздуха
  • 7.1. Гигиеническое значение движения воздуха
  • 7.2. Приборы для определения направления и скорости движения воздуха
  • Скорость движения воздуха (при условии скорости менее 1 м/с) с учетом поправок на температуру воздуха при определении с помощью кататермометра
  • Скорость движения воздуха (при условии скорости более 1 м/с) при определении с помощью кататермометра
  • Шкала скорости движения воздуха в баллах
  • 8. Гигиеническое значение, методы измерения и оценки теплового (инфракрасного) излучения
  • 8.1. Гигиеническое значение теплового (инфракрасного) излучения
  • Соотношение прямой и рассеянной солнечной радиации, %
  • Пределы переносимости человеком тепловой радиации
  • 8.2. Приборы для измерения и методы оценки лучистой энергии
  • Относительная степень черноты некоторых материалов, в долях единицы
  • 9. Методы комплексной оценки метеорологических условий и микроклимата помещений различного назначения
  • 9.1. Методы комплексной оценки метеорологических условий и микроклимата при положительных температурах
  • Различные сочетания температуры, влажности и подвижности воздуха, соответствующие эффективной температуре 18,8
  • Результирующей температур по основной шкале
  • Результирующей температур по нормальной шкале
  • 9.2. Методы комплексной оценки метеорологических условий и микроклимата при отрицательных температурах
  • Вспомогательная таблица для определения теплового самочувствия (условной температуры) методом, рекомендуемым для населения
  • Ветрохолодовой индекс (вхи)
  • 10. Методы физиолого-гигиенической оценки теплового состояния организма человека
  • Тепловое самочувствие военнослужащих до и после проведения коррекции рационов питания с целью повышения резистентности организма к холодовому воздействию
  • Потери воды организмом человека потоотделением (г/ч) при различных температурах и относительной влажности воздуха
  • 11. Физиолого-гигиеническая оценка атмосферного давления
  • 11.1. Общие гигиенические аспекты значения атмосферного давления
  • Характеристика форм декомпрессионной болезни по тяжести заболевания
  • Зоны высоты над уровнем моря в зависимости от реакции организма человека
  • 11.2. Единицы измерения и приборы для измерения атмосферного давления
  • Единицы измерения атмосферного давления
  • Соотношение единиц измерения барометрического давления
  • Приборы для измерения атмосферного давления.
  • 12. Гигиеническое значение, методы измерения интенсивности ультрафиолетового излучения и выбор доз искусственного облучения
  • 12.1. Гигиеническое значение ультрафиолетовой радиации
  • 12.2. Методы определения интенсивности ультрафиолетовой радиации и ее биодозы при профилактическом и лечебном облучении
  • Основные характеристики приборов серии «Аргус»
  • 13. Аэроионизация; ее гигиеническое значение и методы измерения
  • 14. Приборы для измерения показателей метеорологических и микроклиматических условий с совмещенными функциями
  • Режимы работы прибора ивтм -7
  • Требования к измерительным приборам
  • 15. Нормирование некоторых физических факторов среды обитания в различных условиях жизнедеятельности человека
  • Характеристика отдельных категорий работ
  • Допустимые величины интенсивности теплового облучения поверхности тела
  • Критерии допустимого теплового состояния человека (верхняя граница)*
  • Критерии допустимого теплового состояния человека (нижняя граница)*
  • Критерии предельно допустимого теплового состояния человека (верхняя граница)* для продолжительности не более трех часов за рабочую смену
  • Критерии предельно допустимого теплового состояния человека (верхняя граница)* для продолжительности не более одного часа за рабочую смену
  • Допустимая продолжительность пребывания работающих в охлаждающей среде при теплоизоляции одежды 1 кло*
  • Гигиенические требования к теплозащитным показателям
  • (Суммарное тепловое сопротивление) головных уборов, рукавиц и обуви
  • Применительно к метеорологическим условиям различных климатических регионов
  • (Физическая работа категории iIа, время непрерывного пребывания на холоде – 2 часа)
  • Значения тнс-индекса (оС), характеризующие микроклимат как допустимый в теплый период года при соответствующей регламентации продолжительности пребывания
  • Рекомендуемые величины интегрального показателя тепловой нагрузки среды
  • Классы условий труда по показателям микроклимата для рабочих помещений
  • Охлаждающим микроклиматом
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница), для открытых территорий в зимний период года применительно к категории работ Iб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница), для открытых территорий в зимний период года применительно к категории работ iIа-iIб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница) для неотапливаемых помещений применительно к категории работ Iб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница) для неотапливаемых помещений применительно к категории работ Па-Пб
  • Взаимосвязь между средневзвешенной температуры кожи человека, его физиологическим состоянием и типом погоды и оценка типов погоды для отдыха, лечения и туризма
  • Характеристика классов погоды момента при положительной температуре воздуха
  • Характеристика классов погоды момента при отрицательной температуре воздуха
  • Физиолого-климатическая типизация погод теплого времени года
  • Журнал регистрации сведений о погодных условиях в______________
  • Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в помещениях жилых зданий
  • Гигиенические требования к параметрам микроклимата основных помещений закрытых плавательных бассейнов
  • Уровни уф-а излучения (400-315 нм)
  • 2.2.4. Гигиена труда. Физические факторы
  • 2. Нормируемые показатели аэроионного состава воздуха
  • 3. Требования к проведению контроля аэроионного состава воздуха
  • 4. Требования к способам и средствам нормализации аэроионного состава воздуха
  • Термины и определения
  • Библиографические данные
  • Классификация условий труда по аэроионному составу воздуха
  • 16. Ситуационные задачи
  • 16.1. Ситуационные задачи по расчету прогноза состояния здоровья людей в зависимости от температуры наружного воздуха
  • Ультрафиолетового облучения с помощью биодозиметра
  • 16.5. Ситуационные задачи по определению регламентов облучения ультрафиолетовым излучением в фотариях
  • 17. Литература, нормативные и методические материалы
  • 17.1. Библиография
  • 17.2. Нормативные и методические документы
  • Гигиенические требования к аэроионному составу воздуха производственных и общественных помещений: СанПиН 2.2.4.1294-03
  • Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров: СанПиН 2.1.3.1375-03.
  • Психрометрическая будка (будка Вильде) с закрытой психрометрической цинковой клеткой
  • Психрометрическая будка (будка Вильде, английская будка)
  • Вспомогательная величина а при определении средней радиационной температуры табличным методом в.В. Шиба
  • Вспомогательная величина в при определении средней радиационной температуры табличным методом в.В. Шиба
  • Нормальная шкала эффективных температур
  • Обозначение единицы

    Соотношение с единицей системы СИ –

    паскалем (Па) и другими

    Миллиметр ртутного столба

    (мм рт. ст.)

    1 мм. рт. ст. = 133,322 Па

    Миллиметр водного столба

    (мм вод. ст.)

    1 мм вод. ст. = 9,807 Па

    Атмосфера техническая (ат)

    1 ат = 9,807  10 4 Па

    Атмосфера физическая (атм)

    1 атм = 1,033 ат = 1,013  10 4 Па

    1 тор = 1 мм рт. ст.

    Миллибар (мб)

    1 мб = 0,7501 мм рт. ст. = 100 Па

    Таблица 24

    Соотношение единиц измерения барометрического давления

    мм рт. ст.

    мм вод. ст.

    Паскаль, Па

    Атмосфера нормальная, атм

    Миллиметр ртутного столба,

    мм рт. ст.

    Миллибар, мб

    Миллиметр водного столба, мм вод. ст.

    Из приведенных в таблицах 23 и 24 единиц измерения наибольшее распространение в России получили мм. рт. ст. имб . Для удобства пересчетов в необходимых случаях можно использовать следующее соотношение:

    760 мм рт. ст. = 1013мб = 101300Па (36)

    Более простой способ:

    Мб = мм. рт. ст.(37)

    Мм рт. ст. = мб(38)

    Приборы для измерения атмосферного давления.

    В гигиенических исследованиях применяются два типа барометров :

      жидкостные барометры ;

      металлические барометры – анероидные .

    Принцип работы различных модификаций жидкостных барометров основан на том, что атмосферное давление уравновешивает определенной высоты столб жидкости в запаянной с одного конца (верхнего) трубке. Чем меньше удельный вес жидкости, тем выше столб последней, уравновешиваемый давлением атмосферы.

    Наибольшее распространение получили ртутные барометры , так как высокий удельный вес жидкой ртути позволяет сделать прибор более компактным, что объясняется уравновешиванием давления атмосферы менее высоким столбом ртути в трубке.

    Используются три системы ртутных барометров:

    Указанные системы ртутных барометров схематически представлены на рисунке 35.

    Станционные чашечные барометры (рисунок 35). В этих барометрах в чашку, заполненную ртутью, помещается запаянная сверху стеклянная трубка. В трубке над ртутью образуется так называемая торичеллиевая пустота. Воздух в зависимости от состояния обусловливает то или иное давление на ртуть, находящуюся в чашке. Таким образом, уровень ртути устанавливается на ту или иную высоту в стеклянной трубке. Именно данная высота будет уравновешивать давление воздуха на ртуть в чашке, а значит отражать атмосферное давление.

    Высоту уровня ртути, соответствующую атмосферному давлению, определяют по так называемой компенсированной шкале, имеющейся на металлической оправе барометра. Изготавливаются чашечные барометры со шкалами от 810 до 1110 мб и от 680 до 1110 мб.

    Рис. 35. Чашечный барометр (слева)

    А – шкала барометра; Б – винт; В – термометр; Г – чашечка со ртутью

    Ртутный сифонный барометр (справа)

    А – верхнее колено; В – нижнее колено; Д – нижняя шкала; Е – верхняя шкала; Н – термометр; а – отверстие в трубке

    В отдельных модификациях имеются две шкалы – в мм рт. ст. и мб. Десятые доли мм рт. ст. или мб отсчитываются по подвижной шкале – нониусу. Для этого необходимо винтом установить нулевое деление шкалы нониуса на одной линии с вершиной мениска ртутного столба, отсчитать число целых делений миллиметров ртутного столба по шкале барометра и число десятых до-лей миллиметра ртутного столба до первой отметки шкалы нониуса, совпадающей с делением основной шкалы.

    Пример. Нулевое деление шкалы нониуса находится между 760 и 761 мм рт. ст. основной шкалы. Следовательно, число целых делений равно 760 мм рт. ст. К этой цифре необходимо прибавить число десятых долей миллиметра ртутного столба, отсчитанных по шкале нониуса. Первым с делением основной шкалы совпадает 4-е деление шкалы нониуса. Барометрическое давление равно 760 + 0,4 = 760,4 мм рт. ст.

    Как правило, в чашечные барометры встроен термометр (ртутный или спиртовый в зависимости от предполагаемого диапазона температуры воздуха при исследованиях), так как для получения окончательного результата необходимо специальными расчетами привести давление к стандартным условиям температуры (0С) и барометрического давления (760 мм рт. ст.).

    В чашечных экспедиционных барометрах перед наблюдением предварительно с помощью специального винта, расположенного в нижней части прибора, устанавливают уровень ртути в чашке на нулевую отметку.

    Сифонные и сифонно-чашечные барометры (рисунок 35). В этих барометрах величина атмосферного давления измеряется по разнице высот ртутного столба в длинном (запаянном) и коротком (открытом) коленах трубки. Данный барометр позволяет производить измерение давления с точностью до 0,05мм рт. ст . При помощи винта в нижней части приборов уровень ртути в коротком (открытом) колене трубки приводят к нулевой точке, а затем отсчитывают показания барометра.

    Сифонно-чашечный инспекторский барометр. Данный прибор имеет две шкалы: слева в мб и справа в мм рт. ст. Для определения десятых долей мм рт. ст. служит нониус. Найденные значения атмосферного давления, как и при работе с другими жидкостными барометрами, необходимо с помощью вычислений или специальных таблиц привести к 0С.

    На метеорологических станциях в показания барометров вводят не только температурную поправку, но и так называемую постоянную поправку: инструментальную и поправку на силу тяжести.

    Устанавливать барометры следует в отдалении или изолированно от источников теплового излучения (солнечное излучение, нагревательные приборы), а также в отдалении от дверей и окон.

    Металлический барометр-анероид (рисунок 36). Данный прибор особенно удобен при проведении исследований в экспедиционных условиях. Однако этот барометр перед использованием должен быть выверен по более точному ртутному барометру.

    Рис. 36. Барометр-анероид

    Рис. 37. Барограф

    Принцип устройства и действия барометра-анероида очень прост. Металлическая подушечка (коробка) с гофрированными (для большей эластичности) стенками, из которой удален воздух до остаточного давления 50-60 мм рт. ст., под воздействием давления воздуха изменяет свой объем и в результате деформируется. Деформация передается по системе рычажков стрелке, которая и указывает на циферблате атмосферное давление. На циферблате барометра анероида вмонтирован изогнутой формы термометр в связи с необходимостью, как указывалось выше, приведения результатов измерения к 0С. Градуировка циферблата может быть в мб или в мм рт. ст. В некоторых модификациях барометра-анероида имеются две шкалы – как в мб, так и в мм рт. ст.

    Анероид-высотомер (альтиметр). В измерении высоты по уровню атмосферного давления заложена закономерность, согласно которой между давлением воздуха и высотой имеется зависимость, весьма близкая к линейной. То есть при подъеме на высоту пропорционально снижается атмосферное давление.

    Данный прибор предназначен для измерения атмосферного давления именно на высоте и имеет две шкалы. На одной из них нанесены величины давления в мм рт. ст. или мб, на другой – высота в метрах. На летательных аппаратах применяют альтиметры с циферблатом, на котором по шкале определяется высота полета.

    Барограф (барометр-самописец). Данный прибор предназначен для непрерывной регистрации атмосферного давления. В гигиенической практике применяются металлические (анероидные) барографы (рисунок 37). Под влиянием изменений атмосферного давления пакет соединенных вместе анероидных коробок в результате деформации оказывает влияние на систему рычажков, а через них на специальное перо с незасыхающими специальными чернилами. При увеличении атмосферного давления анероидные коробки сжимаются и рычажок с пером поднимается кверху. При уменьшении давления анероидные коробки с помощью помещенных внутри их пружин расширяются и перо чертит линию книзу. Запись давления в виде непрерывной линии вычерчивается пером на градуированной в мм рт. ст. или мб бумажной ленте, помещенной на цилиндрический вращающийся с помощью механического завода барабан. Используются барографы с недельным или суточным заводом с соответствующими градуированными лентами в зависимости от цели, задач и характера исследований. Выпускаются барографы с электрическим приводом, вращающим барабан. Однако на практике данная модификация прибора менее удобна, так как ограничивается его использование в экспедиционных условиях. Для устранения температурных влияний на показания барографа в них вставляется биметаллические компенсаторы, автоматически осуществляющие коррекцию (поправку) движения рычажков в зависимости от температуры воздуха. Перед началом работы рычажок с пером с помощью специального винта устанавливается в исходное положение, соответствующее времени, обозначенном на ленте и на уровень давления, измеренный точным ртутным барометром.

    Чернила для записи барограмм можно приготовить по следующей прописи:

    Приведение объема воздуха к нормальным условиям (760 мм рт. ст., 0 С). Данный аспект измерения барометрического давления весьма важен при измерении концентраций загрязняющих веществ в воздухе. Игнорирование указанного аспекта может обусловить значительные ошибки в расчетах концентраций вредных веществ, которые могут достигать 30 и более процентов.

    Приведение объема воздуха к нормальным условиям производится по формуле:

    Пример . Для измерения концентрации пыли в воздухе через бумажный фильтр с помощью электрического аспиратора пропущено 200 л воздуха. Температура воздуха в период его аспирации составляла- +26С, барометрическое давление - 752 мм рт. ст. Необходимо привести объем воздуха к нормальным условиям, то есть к 0С и 760 мм рт. ст.

    Подставляем в формулу Х значения соответствующих параметров примера и рассчитываем искомый объем воздуха при нормальных условиях:

    Таким образом, при расчете концентрации пыли в воздухе необходимо учитывать объем воздуха именно 180,69 л , а не 200л .

    Для упрощения расчетов объема воздуха при нормальных условиях можно пользоваться поправочными коэффициентами на температуру и давление (таблица 25) или рассчитанными готовыми величинами формулы 39 и(таблица 26).

    Таблица 25

    Поправочные коэффициенты на температуру и давление для приведения объема воздуха к нормальным условиям

    (температура 0 о

    Барометрическое давление, мм рт. ст.

    Окончание таблицы 25

    Барометрическое давление, мм рт. ст.

    Таблица 26

    Коэффициенты для приведения объемов воздуха к нормальным условиям

    (температура 0 о С, барометрическое давление 760 мм рт. ст.)

    мм рт. ст.

    мм рт. ст.

    Давление - это величина, которая равна силе, действующей строго перпендикулярно на единицу площади поверхности. Рассчитывается по формуле: P = F/S . Международная система исчисления предполагает измерение такой величины в паскалях (1 Па равен силе в 1 ньютон на площадь 1 квадратный метр, Н/м2). Но поскольку это достаточно малое давление, то измерения чаще указываются в кПа или МПа . В различных отраслях принято использовать свои системы исчисления, в автомобильной, давления может измеряться : в барах , атмосферах , килограммах силы на см² (техническая атмосфера), мега паскалях или фунтах на квадратный дюйм (psi).

    Для быстрого перевода единиц измерения следует ориентироваться на такое взаимоотношение значений друг к другу:

    1 МПа = 10 бар;

    100 кПа = 1 bar;

    1 бар ≈ 1 атм;

    3 атм = 44 psi;

    1 PSI ≈ 0.07 кгс/см²;

    1 кгс/см² = 1 at.

    Таблица соотношения единиц измерения давления
    Величина МПа бар атм кгс/см2 psi at
    1 МПа 1 10 9,8692 10,197 145,04 10.19716
    1 бар 0,1 1 0,9869 1,0197 14,504 1.019716
    1 атм (физическая атмосфера) 0,10133 1,0133 1 1,0333 14,696 1.033227
    1 кгс/см2 0,098066 0,98066 0,96784 1 14,223 1
    1 PSI (фунт/дюйм²) 0,006894 0,06894 0,068045 0,070307 1 0.070308
    1 at (техническая атмосфера) 0.098066 0.980665 0.96784 1 14.223 1

    Зачем нужен калькулятор перевода единиц давления

    Онлайн калькулятор позволит быстро и точно перевести значения из одних единиц измерения давления в другие. Такая конвертация может пригодятся автовладельцам при замере компрессии в двигателе, при проверке давления в топливной магистрали, накачке шин до требуемого значения (очень часто приходится перевести PSI в атмосферы или МПа в бар при проверке давления), заправке кондиционера фреоном. Поскольку, шкала на манометре может быть в одной системе исчисления, а в инструкции совсем в другой, то нередко возникает потребность перевести бары в килограммы, мегапаскали, килограмм силы на квадратный сантиметр, технические или физические атмосферы. Либо, если нужен результат в английской системе исчисления, то и фунт-силы на квадратный дюйм (lbf in²), дабы точно соответствовать требуемым указаниям.

    Как пользоваться online калькулятором

    Для того чтобы воспользоваться мгновенным переводом одной величины давления в другую и узнать сколько будет бар в мпа, кгс/см², атм или psi нужно:

    1. В левом списке выбрать единицу измерения, с которой нужно выполнить преобразование;
    2. В правом списке установить единицу, в которую будет выполняется конвертирование;
    3. Сразу после ввода числа в любое из двух полей появляется «результат». Так что можно перевести как с одной величины в другую так и на оборот.

    Например, в первое поле было введено число 25, то в зависимости от выбранной единицы, вы подсчитаете сколько это будет баров, атмосфер, мегапаскалей, килограмм силы произведенной на один см² или фунт-сила на квадратный дюйм. Когда же это самое значение было поставлено в другое (правое) поле, то калькулятор посчитает обратное соотношение выбранных физических величин давления.

    Рекомендуем также

    Конвертер единиц измерения давления | Компании «Электросервис»

    Паскаль (Pa, Па) ≈ 0.0*10 0

    Бар (BAR, bar) ≈ 0.0*10 0

    Килопаскаль (kPa, кПа) ≈ 0.0*10 0

    Микрон (микрометр ртутного столба) [μm Hg] ≈ 0.0*10 0

    Мегапаскаль (MPa, МПа) ≈ 0.0*10 0

    Миллиметр ртутного столба (мм рт.ст., mm Hg, Torr) [0°С] ≈ 0.0*10 0

    Гектопаскаль (hPa, гПа) = Миллибар (mБар, mbar) ≈ 0.0*10 0

    Фунт-сила на квадратный дюйм (PSI, psi) ≈ 0.0*10 0

    Физическая (стандартная) атмосфера (atm, атм) ≈ 0.0*10 0

    Дюйм ртутного столба (inHg) [32°F] ≈ 0.0*10 0

    Техническая атмосфера (at, ат) = Килограмм-сила (кгс/см²) ≈ 0.0*10 0

    Метр водяного столба (mAq, м вод. ст.) [4°С] ≈ 0.0*10 0

    правила перевода Бар в МПа, Krc и Psi, понятие о единицах измерения и назначение калькулятора

    Корректный калькулятор давления в шинах позволяет использовать оптимальные данные по нагнетанию воздуха в колеса под конкретные условия эксплуатации. Учитывает возможность установки нестандартных для автомобиля покрышек. Поддерживает двухсторонний перевод давления (конвертацию) для получения привычных или  применяемых производителем единиц измерения. Способствует правильному изменению клиренса без риска сбоя электронных систем и ускоренного износа подвески, тормозов, несущих элементов кузова.

    Какое давление должно быть в колесах

    Уровень накачки покрышек рекомендованных автопроизводителем под определенную модель указан в руководстве по эксплуатации и на информационном шильдике, который прикреплен к крышке бака или стойке водительской двери. Эта информация учитывает несколько типоразмеров шин, нагрузку, распределение массы по осям. Но чтобы понимать, сколько давления должно быть в колесах и как его правильно контролировать, нужно знать какими устройствами и в каких единицах проводятся измерения.

    Важно!

    На покрышках обозначены лишь допустимые значения давления (MAX PRESSURE), выше которых не стоит подниматься, чтобы не провоцировать ускоренный износ и риск аварии.

    Недостаточно накачанное колесо прогибается по центру. Это приводим к:

    • уменьшению рабочий площади протектора;
    • ухудшению управляемости;
    • быстрому истиранию плечевой поверхности;
    • увеличенному расходу топлива.

    Такой вариант приемлем только для езды по мягким грунтовым дорогам или в зимнее время по снегу.

    Перекаченная покрышка подвержена ускоренному износу центрального протектора, образованию грыж и проколов, росту ударных нагрузок на подвеску. Также заметно снизиться комфорт езды и степень удержания дорожного полотна в скоростных поворотах на фоне резкого увеличения тормозного пути. Не приемлемо и когда в каждом колесе свое собственное давление, поскольку эта ситуация кардинально нарушает устойчивость транспортного средства.

    Популярное ранее «правило», что в передних покрышках должно быть 2,2 атмосферы, а в задних 2,0 (ненагруженное авто) или 2,4 (полная загруженность) давно утратило актуальность из-за массового притока облегченных и тяжелых иномарок, разнообразия высотно-профильного и размерного форм-фактора шин.

    Единицы измерения шинного давления

    В России и большинстве стран мира применяется метрическая методология физических величин, которая известна всем со школы под названием «система Си». В ней использованы привычные нам метры, килограммы, секунды и амперы. К ним плотно прикреплены производные и внесистемные единицы. В частности для измерения давления используется соотношение силы, с которым 1 кг массы воздействует на площадь равную 1 квадратному сантиметру. Такой показатель получил название – атмосфера или сокращено «атм.» (англ. – atm).

    До введения Международной системы «Си» использовалась методология «СГС» (сантиметр-грамм-секунда). В качестве единицы давления в ней фигурировал «бар», который демонстрировал степень воздействия силы в 1 «дину» на площадь в 1 квадратный сантиметр. Сама же единица «дина» – это сила придающая массе в 1 грамм ускорении в 1 см/с2. После определенных перерасчетов может быть приравнена к 1,0197 кг в формуле для обозначения атмосферы.

    Важно!

    Давления 1 бар равно 0,98692 атм., что позволяет их считать равноразмерными величинами (1 бар = 1 атм.), особенно при расчетах с небольшими количественными выражениями.

    В системе «Си» также существует универсальная мера для определения механического напряжения, сопротивлению разрыву, упругости и давления. Это величина получила название «паскаль» (Па или Ра). Ее формула идентичная расчету бара, но вместо грамма используется масса равная 1 килограмму, а ускорение считается в метрах. Из-за малых значений распространение получили мегапаскали (МПа или 106 Па).

    Один самых мощных автопроизводителей в мире – США, живет по американской системе мер с баррелями, фунтами, дюймами. Эта особенность характерна и для величины давления в psi (русск. – «пси»), которая измеряется в фунтах на квадратный дюйм.

    Переводы psi в МПа

    Чтобы перевести МПа в пси, бары, атмосферы или наоборот, нужен конвертер давления. Также можно выполнить несложные расчеты вручную, используя таблицу соотношений (см. ниже).

    Меры давления в шинах атм. (atm) или кг/см2 кПа (kPa) МПа (MPa) бар (bar) psi (пси)
    Физическая атмосфера (атм.) 1 101,325 0,1013 1,013 14,696
    Килопаскаль (КПа) 0,00986 1 0,001 0,01 0,145
    Мегапаскаль (МПа) 9,869 1000 1 10 145,038
    Бар 0,98692 ≈ 1 100 0,1 1 14,5038
    Фунт на квадратный дюйм (psi) 0,068 6,8947 0,00689 0,0689 1

    Для наглядности рассмотрим несколько примеров конвертации показателей давления в шинах.

    Направление расчета Фактическое значение (пример) Коэффициент из таблицы Искомое значение (расчетное)
    Рsi в МПа 22 0,00689 0,152
    Мпа в psi 0,2 145,038 29
    Пси в бары 27 0,0689 1,9
    Бары в пси 2,0 14,5038 29
    МПа в бары 0,2 10 2,0
    Бары в МПа 2,0 0,1 0,2

    Величина в килопаскалях часто указана на покрышках, как предельно допустимая нагрузка. Чтобы перейти к привычным атмосферам, нужно промаркированный на резине показатель разделить на коэффициент 101,325. Например, 240 kPa/101,325= 2,3 атм.

    Приборы для измерения

    Основное устройства для проверки давления в шинах – механические или цифровые манометры, которые бывают нескольких типов:

    • шестереночные со шкалой и стрелкой;
    • реечные с цилиндрической пружинной;
    • электронные с информационным табло.

    Механические модели практичны и надежны. Часто дополнены встроенным механизмом сброса избыточного воздуха и дефлятором на гибком шланге для удобства подкачки. Реечные модификации отличаются точностью, компактностью, удобством эксплуатации. Электронные манометры для колес – современные девайсы с чувствительными датчиками и возможностью настройки под потребности пользователя, в том числе по единицам измерения.

    Важно!

    Замеры давления шин нужно проводить на автомобиле, который простоял без движения не менее 10-20 минут (оптимально 7-8 часов) и нагретый внутри колес воздух успел остыть и сжаться до естественного состояния.

    Системы контроля давления

    Все популярней становятся инновационные устройства и системы для автоматического контроля текущего давления в автомобильных шинах.

    Дополнение к антиблокировочной системе ABC

    Новые расширения для АБС способны постоянно отслеживать уменьшение или увеличения радиуса покрышек в результата изменения давления закаченного воздуха. Считанные данные обрабатывается блоком управления и выводится на дисплей для информирования водителя. Серьезное расхождение фактических и допустимых значений сопровождается звуковым сигналом для привлечения дополнительного внимания.

    Колпачки-индикаторы

    Комплект колпачков с цветными маркерами надежно накручивается на клапаны шин (ниппели). Оснащены выдвижными цилиндрами сигнальных расцветок (желтый, красный, зеленый), которые визуально указывают на отклонения от нормы. Отличаются точностью измерений. Рассчитаны на длительную эксплуатацию и многократный монтаж. Не подвержены коррозионному воздействию за счет износостойких покрытий.

    Радиодатчики на ниппели

    Придвинутая вариация колпачков-индикаторов со встроенными термоэлементами и модулем трансляции радиосигнала. Замеряют температуру внутри колеса и соотносят ее с фактическим давлением. Передают данные на центральный дисплей бортовой системы или отдельный мини-монитор. Дополнены звуковой сигнализацией и рядом индивидуальных настроек.

    Онлайн-калькулятор давления – удобный сервис для правильного подбора стандартных и оригинальных покрышек под технические, конструкционные и эксплуатационные характеристики автомобиля. Также позволяет рассчитать допустимую массу транспортного средства и нагрузки на колеса. Конвертер давления способствует удобному переходу между различными единицами измерения. При необходимости несложные конвектационные расчеты можно выполнить самостоятельно используя табличные зависимость между показателями.

    Паскаль единица измерения давления. Калькулятор перевода давления в барах на МПа, кгс и psi

    Давление - это величина, которая равна силе, действующей строго перпендикулярно на единицу площади поверхности. Рассчитывается по формуле: P = F/S . Международная система исчисления предполагает измерение такой величины в паскалях (1 Па равен силе в 1 ньютон на площадь 1 квадратный метр, Н/м2). Но поскольку это достаточно малое давление, то измерения чаще указываются в кПа или МПа . В различных отраслях принято использовать свои системы исчисления, в автомобильной, давления может измеряться : в барах , атмосферах , килограммах силы на см² (техническая атмосфера), мега паскалях или фунтах на квадратный дюйм (psi).

    Для быстрого перевода единиц измерения следует ориентироваться на такое взаимоотношение значений друг к другу:

    1 МПа = 10 бар;

    100 кПа = 1 bar;

    1 бар ≈ 1 атм;

    3 атм = 44 psi;

    1 PSI ≈ 0.07 кгс/см²;

    1 кгс/см² = 1 at.

    Таблица соотношения единиц измерения давления
    Величина МПа бар атм кгс/см2 psi at
    1 МПа 1 10 9,8692 10,197 145,04 10.19716
    1 бар 0,1 1 0,9869 1,0197 14,504 1.019716
    1 атм (физическая атмосфера) 0,10133 1,0133 1 1,0333 14,696 1.033227
    1 кгс/см2 0,098066 0,98066 0,96784 1 14,223 1
    1 PSI (фунт/дюйм²) 0,006894 0,06894 0,068045 0,070307 1 0.070308
    1 at (техническая атмосфера) 0.098066 0.980665 0.96784 1 14.223 1

    Зачем нужен калькулятор перевода единиц давления

    Онлайн калькулятор позволит быстро и точно перевести значения из одних единиц измерения давления в другие. Такая конвертация может пригодятся автовладельцам при замере компрессии в двигателе, при проверке давления в топливной магистрали, накачке шин до требуемого значения (очень часто приходится перевести PSI в атмосферы или МПа в бар при проверке давления), заправке кондиционера фреоном. Поскольку, шкала на манометре может быть в одной системе исчисления, а в инструкции совсем в другой, то нередко возникает потребность перевести бары в килограммы, мегапаскали, килограмм силы на квадратный сантиметр, технические или физические атмосферы. Либо, если нужен результат в английской системе исчисления, то и фунт-силы на квадратный дюйм (lbf in²), дабы точно соответствовать требуемым указаниям.

    Как пользоваться online калькулятором

    Для того чтобы воспользоваться мгновенным переводом одной величины давления в другую и узнать сколько будет бар в мпа, кгс/см², атм или psi нужно:

    1. В левом списке выбрать единицу измерения, с которой нужно выполнить преобразование;
    2. В правом списке установить единицу, в которую будет выполняется конвертирование;
    3. Сразу после ввода числа в любое из двух полей появляется «результат». Так что можно перевести как с одной величины в другую так и на оборот.

    Например, в первое поле было введено число 25, то в зависимости от выбранной единицы, вы подсчитаете сколько это будет баров, атмосфер, мегапаскалей, килограмм силы произведенной на один см² или фунт-сила на квадратный дюйм. Когда же это самое значение было поставлено в другое (правое) поле, то калькулятор посчитает обратное соотношение выбранных физических величин давления.

    Принцип действия множества современных гидравлических устройств – подъемников, тормозных механизмов, прессов, систем водоснабжения – объясняется на основании закона Паскаля. В 1961 году именем этого ученого, внесшего большой вклад в развитие физики, математики, философии и других наук, была названа одна из единиц СИ. А что измеряется в паскалях?

    Паскаль

    Итак, паскаль (Па) – мера давления, механического напряжения, модуля упругости и некоторых других характеристик, используемых в технике. Давление в 1 паскаль создает сила величиной 1 ньютон, однородно распределенная по площади 1 квадратный метр, перпендикулярной направлению ее действия (1 Па = 1 Н/м 2). Вспомнив, что 1 Н = 1 кг∙м/с 2 , можно выразить паскаль через основные единицы СИ: 1 Па = 1 кг/(м∙с 2).

    Давление относится к скалярным величинам, оно характеризует результат воздействия внешней силы на поверхность, распределенной по ее площади. Поясним это на примере: представим себе человека, который сначала перемещается по рыхлому снегу на лыжах, а затем снимает их и проваливается вглубь сугроба. В первом случае сила – вес человека – равномерно распределена по относительно большой поверхности лыж, в другом – только по площади стопы, что приводит к возрастанию давления, а следовательно, и к проседанию снега.

    Внешние силы, действуя на тело, стремятся сместить положение частиц, из которых оно состоит. В ответ на это внутри тела будут возникать внутренние силы, препятствующие смещению. Мера результата их действия называется механическим напряжением, которое также выражается в паскалях.

    В чем еще измеряют давление?

    Если идет речь о давлении в медицине или метеорологии, чаще его оценивают в иных единицах – миллиметрах ртутного столба. А в технике можно встретить такие меры давления, как бар или атмосфера. Поэтому важно уметь переводить их в паскали.

    В СИ паскаль также является единицей измерения механического напряжения , модулей упругости , модуля Юнга , объёмного модуля упругости , предела текучести , предела пропорциональности , сопротивления разрыву , сопротивления срезу , звукового давления , осмотического давления , летучести (фугитивности) .

    В соответствии с общими правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы паскаль пишется со строчной буквы , а её обозначение - с заглавной . Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием паскаля. Например, обозначение единицы динамической вязкости записывается как Па· .

    Кратные и дольные единицы

    Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ .

    Кратные Дольные
    величина название обозначение величина название обозначение
    10 1 Па декапаскаль даПа daPa 10 −1 Па деципаскаль дПа dPa
    10 2 Па гектопаскаль гПа hPa 10 −2 Па сантипаскаль сПа cPa
    10 3 Па килопаскаль кПа kPa 10 −3 Па миллипаскаль мПа mPa
    10 6 Па мегапаскаль МПа MPa 10 −6 Па микропаскаль мкПа µPa
    10 9 Па гигапаскаль ГПа GPa 10 −9 Па нанопаскаль нПа nPa
    10 12 Па терапаскаль ТПа TPa 10 −12 Па пикопаскаль пПа pPa
    10 15 Па петапаскаль ППа PPa 10 −15 Па фемтопаскаль фПа fPa
    10 18 Па эксапаскаль ЭПа EPa 10 −18 Па аттопаскаль аПа aPa
    10 21 Па зеттапаскаль ЗПа ZPa 10 −21 Па зептопаскаль зПа zPa
    10 24 Па иоттапаскаль ИПа YPa 10 −24 Па иоктопаскаль иПа yPa
    применять не рекомендуется

    Сравнение с другими единицами измерения давления

    Единицы давления
    Паскаль
    (Pa, Па)
    Бар
    (bar, бар)
    Техническая атмосфера
    (at, ат)
    Физическая атмосфера
    (atm, атм)

    (мм рт. ст., mm Hg, Torr, торр)
    Метр водяного столба
    (м вод. ст., m H 2 O)
    Фунт-сила
    на кв. дюйм
    (psi)
    1 Па 1 / 2 10 −5 10,197·10 −6 9,8692·10 −6 7,5006·10 −3 1,0197·10 −4 145,04·10 −6
    1 бар 10 5 1·10 6 дин /см 2 1,0197 0,98692 750,06 10,197 14,504
    1 ат 98066,5 0,980665 1 кгс /см 2 0,96784 735,56 10 14,223
    1 атм 101325 1,01325 1,033 1 атм 760 10,33 14,696
    1 мм рт. ст. 133,322 1,3332·10 −3 1,3595·10 −3 1,3158·10 −3 1 13,595·10 −3 19,337·10 −3
    1 м вод. ст. 9806,65 9,80665·10 −2 0,1 0,096784 73,556 1 м вод. ст. 1,4223
    1 psi 6894,76 68,948·10 −3 70,307·10 −3 68,046·10 −3 51,715 0,70307 1 lbf/in 2

    На практике применяют приближённые значения: 1 атм = 0,1 МПа и 1 МПа = 10 атм. 1 мм водяного столба примерно равен 10 Па, 1 равен приблизительно 133 Па.

    Нормальное атмосферное давление принято считать равным 760 мм ртутного столба, или 101 325 Па (101 кПа).

    Размерность единицы давления (Н/м 2) совпадает с размерностью единицы плотности энергии (Дж/м 3), но с точки зрения физики эти единицы не эквивалентны, так как описывают разные физические свойства. В связи с этим некорректно использовать Паскали для измерения плотности энергии, а давление записывать как Дж/м 3 .

    Напишите отзыв о статье "Паскаль (единица измерения)"

    Примечания

    1. // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин , А. М. Бонч-Бруевич , А. С. Боровик-Романов , Б. К. Вайнштейн , С. В. Вонсовский , А. В. Гапонов-Грехов , С. С. Герштейн , И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич , М. Е. Жаботинский, Д. Н. Зубарев , Б. Б. Кадомцев , И. С. Шапиро , Д. В. Ширков ; под общ. ред. А. М. Прохорова . - М .: Советская энциклопедия, 1992. - Т. 3. - С. 549-550. - 672 с. - 48 000 экз.
    2. Деньгуб В. М. , Смирнов В. Г. Единицы величин. Словарь справочник. - М .: Издательство стандартов, 1990. - 240 с. - ISBN 5-7050-0118-5 .
    3. / Bureau International des Poids et Mesures. - Paris, 2006. - P. 156. - 180 p. - ISBN 92-822-2213-6 . (англ.)

    Ссылки

    Основные единицы
    Это заготовка статьи о единицах измерения. Вы можете помочь проекту, дополнив её.

    Отрывок, характеризующий Паскаль (единица измерения)

    Когда принесены были жареная баранина, яичница, самовар, водка и вино из русского погреба, которое с собой привезли французы, Рамбаль попросил Пьера принять участие в этом обеде и тотчас сам, жадно и быстро, как здоровый и голодный человек, принялся есть, быстро пережевывая своими сильными зубами, беспрестанно причмокивая и приговаривая excellent, exquis! [чудесно, превосходно!] Лицо его раскраснелось и покрылось потом. Пьер был голоден и с удовольствием принял участие в обеде. Морель, денщик, принес кастрюлю с теплой водой и поставил в нее бутылку красного вина. Кроме того, он принес бутылку с квасом, которую он для пробы взял в кухне. Напиток этот был уже известен французам и получил название. Они называли квас limonade de cochon (свиной лимонад), и Морель хвалил этот limonade de cochon, который он нашел в кухне. Но так как у капитана было вино, добытое при переходе через Москву, то он предоставил квас Морелю и взялся за бутылку бордо. Он завернул бутылку по горлышко в салфетку и налил себе и Пьеру вина. Утоленный голод и вино еще более оживили капитана, и он не переставая разговаривал во время обеда.
    – Oui, mon cher monsieur Pierre, je vous dois une fiere chandelle de m"avoir sauve… de cet enrage… J"en ai assez, voyez vous, de balles dans le corps. En voila une (on показал на бок) a Wagram et de deux a Smolensk, – он показал шрам, который был на щеке. – Et cette jambe, comme vous voyez, qui ne veut pas marcher. C"est a la grande bataille du 7 a la Moskowa que j"ai recu ca. Sacre dieu, c"etait beau. Il fallait voir ca, c"etait un deluge de feu. Vous nous avez taille une rude besogne; vous pouvez vous en vanter, nom d"un petit bonhomme. Et, ma parole, malgre l"atoux que j"y ai gagne, je serais pret a recommencer. Je plains ceux qui n"ont pas vu ca. [Да, мой любезный господин Пьер, я обязан поставить за вас добрую свечку за то, что вы спасли меня от этого бешеного. С меня, видите ли, довольно тех пуль, которые у меня в теле. Вот одна под Ваграмом, другая под Смоленском. А эта нога, вы видите, которая не хочет двигаться. Это при большом сражении 7 го под Москвою. О! это было чудесно! Надо было видеть, это был потоп огня. Задали вы нам трудную работу, можете похвалиться. И ей богу, несмотря на этот козырь (он указал на крест), я был бы готов начать все снова. Жалею тех, которые не видали этого.]
    – J"y ai ete, [Я был там,] – сказал Пьер.
    – Bah, vraiment! Eh bien, tant mieux, – сказал француз. – Vous etes de fiers ennemis, tout de meme. La grande redoute a ete tenace, nom d"une pipe. Et vous nous l"avez fait cranement payer. J"y suis alle trois fois, tel que vous me voyez. Trois fois nous etions sur les canons et trois fois on nous a culbute et comme des capucins de cartes. Oh!! c"etait beau, monsieur Pierre. Vos grenadiers ont ete superbes, tonnerre de Dieu. Je les ai vu six fois de suite serrer les rangs, et marcher comme a une revue. Les beaux hommes! Notre roi de Naples, qui s"y connait a crie: bravo! Ah, ah! soldat comme nous autres! – сказал он, улыбаясь, поело минутного молчания. – Tant mieux, tant mieux, monsieur Pierre. Terribles en bataille… galants… – он подмигнул с улыбкой, – avec les belles, voila les Francais, monsieur Pierre, n"est ce pas? [Ба, в самом деле? Тем лучше. Вы лихие враги, надо признаться. Хорошо держался большой редут, черт возьми. И дорого же вы заставили нас поплатиться. Я там три раза был, как вы меня видите. Три раза мы были на пушках, три раза нас опрокидывали, как карточных солдатиков. Ваши гренадеры были великолепны, ей богу. Я видел, как их ряды шесть раз смыкались и как они выступали точно на парад. Чудный народ! Наш Неаполитанский король, который в этих делах собаку съел, кричал им: браво! – Га, га, так вы наш брат солдат! – Тем лучше, тем лучше, господин Пьер. Страшны в сражениях, любезны с красавицами, вот французы, господин Пьер. Не правда ли?]

    Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

    1 паскаль [Па] = 0,001 килоньютон на кв. метр [кН/м²]

    Исходная величина

    Преобразованная величина

    паскаль эксапаскаль петапаскаль терапаскаль гигапаскаль мегапаскаль килопаскаль гектопаскаль декапаскаль деципаскаль сантипаскаль миллипаскаль микропаскаль нанопаскаль пикопаскаль фемтопаскаль аттопаскаль ньютон на кв. метр ньютон на кв. сантиметр ньютон на кв. миллиметр килоньютон на кв. метр бар миллибар микробар дина на кв. сантиметр килограмм-сила на кв. метр килограмм-сила на кв. сантиметр килограмм-сила на кв. миллиметр грамм-сила на кв. сантиметр тонна-сила (кор.) на кв. фут тонна-сила (кор.) на кв. дюйм тонна-сила (дл.) на кв. фут тонна-сила (дл.) на кв. дюйм килофунт-сила на кв. дюйм килофунт-сила на кв. дюйм фунт-сила на кв. фут фунт-сила на кв. дюйм psi паундаль на кв. фут торр сантиметр ртутного столба (0°C) миллиметр ртутного столба (0°C) дюйм ртутного столба (32°F) дюйм ртутного столба (60°F) сантиметр вод. столба (4°C) мм вод. столба (4°C) дюйм вод. столба (4°C) фут водяного столба (4°C) дюйм водяного столба (60°F) фут водяного столба (60°F) техническая атмосфера физическая атмосфера децибар стен на квадратный метр пьеза бария (барий) Планковское давление метр морской воды фут морской воды (при 15°С) метр вод. столба (4°C)

    Общие сведения

    В физике давление определяется как сила, действующая на единицу площади поверхности. Если две одинаковые силы действуют на одну большую и одну меньшую поверхность, то давление на меньшую поверхность будет больше. Согласитесь, гораздо страшнее, если вам на ногу наступит обладательница шпилек, чем хозяйка кроссовок. Например, если надавить лезвием острого ножа на помидор или морковь, овощ будет разрезан пополам. Площадь поверхности лезвия, соприкасающаяся с овощем, мала, поэтому давление достаточно велико, чтобы разрезать этот овощ. Если же надавить с той же силой на помидор или морковь тупым ножом, то, скорее всего, овощ не разрежется, так как площадь поверхности ножа теперь больше, а значит давление - меньше.

    В системе СИ давление измеряется в паскалях, или ньютонах на квадратный метр.

    Относительное давление

    Иногда давление измеряется как разница абсолютного и атмосферного давления. Такое давление называется относительным или манометрическим и именно его измеряют, например, при проверке давления в автомобильных шинах. Измерительные приборы часто, хотя и не всегда, показывают именно относительное давление.

    Атмосферное давление

    Атмосферное давление - это давление воздуха в данном месте. Обычно оно обозначает давление столба воздуха на единицу площади поверхности. Изменение в атмосферном давлении влияет на погоду и температуру воздуха. Люди и животные страдают от сильных перепадов давления. Пониженное давление вызывает у людей и животных проблемы разной степени тяжести, от психического и физического дискомфорта до заболеваний с летальным исходом. По этой причине, в кабинах самолетов поддерживается давление выше атмосферного на данной высоте, потому что атмосферное давление на крейсерской высоте полета слишком низкое.

    Атмосферное давление понижается с высотой. Люди и животные, живущие высоко в горах, например в Гималаях, адаптируются к таким условиям. Путешественники, напротив, должны принять необходимые меры предосторожности, чтобы не заболеть из-за того, что организм не привык к такому низкому давлению. Альпинисты, например, могут заболеть высотной болезнью, связанной с недостатком кислорода в крови и кислородным голоданием организма. Это заболевание особенно опасно, если находиться в горах длительное время. Обострение высотной болезни ведет к серьезным осложнениям, таким как острая горная болезнь, высокогорный отек легких, высокогорный отек головного мозга и острейшая форма горной болезни. Опасность высотной и горной болезней начинается на высоте 2400 метров над уровнем моря. Во избежание высотной болезни доктора советуют не употреблять депрессанты, такие как алкоголь и снотворное, пить много жидкости, и подниматься на высоту постепенно, например, пешком, а не на транспорте. Также полезно есть большое количество углеводов, и хорошо отдыхать, особенно если подъем в гору произошел быстро. Эти меры позволят организму привыкнуть к кислородной недостаточности, вызванной низким атмосферным давлением. Если следовать этим рекомендациям, то организму сможет вырабатывать больше красных кровяных телец для транспортировки кислорода к мозгу и внутренним органам. Для этого организм увеличат пульс и частоту дыхания.

    Первая медицинская помощь в таких случаях оказывается немедленно. Важно переместить больного на более низкую высоту, где атмосферное давление выше, желательно на высоту ниже, чем 2400 метров над уровнем моря. Также используются лекарства и портативные гипербарические камеры. Это легкие переносные камеры, в которых можно повысить давление с помощью ножного насоса. Больного горной болезнью кладут в такую камеру, в которой поддерживается давление, соответствующее более низкой высоте над уровнем моря. Такая камера используется только для оказания первой медицинской помощи, после чего больного необходимо спустить ниже.

    Некоторые спортсмены используют низкое давление, чтобы улучшить кровообращение. Обычно для этого тренировки проходят в нормальных условиях, а спят эти спортсмены в среде с низким давлением. Таким образом, их организм привыкает к высокогорным условиям и начинает вырабатывать больше красных кровяных телец, что, в свою очередь, повышает количество кислорода в крови, и позволяет достичь более высоких результатов в спорте. Для этого выпускаются специальные палатки, давление в которых регулируются. Некоторые спортсмены даже изменяют давление во всей спальне, но герметизация спальни - дорогостоящий процесс.

    Скафандры

    Пилотам и космонавтам приходится работать в среде с низким давлением, поэтому они работают в скафандрах, позволяющих компенсировать низкое давление окружающей среды. Космические скафандры полностью защищают человека от окружающей среды. Их используют в космосе. Высотно-компенсационные костюмы используют пилоты на больших высотах - они помогают пилоту дышать и противодействуют низкому барометрическому давлению.

    Гидростатическое давление

    Гидростатическое давление - это давление жидкости, вызванное силой тяжести. Это явление играет огромную роль не только в технике и физике, но также и в медицине. Например, кровяное давление - это гидростатическое давление крови на стенки кровеносных сосудов. Кровяное давление - это давление в артериях. Оно представлено двумя величинами: систолическим, или наибольшим давлением, и диастолическим, или наименьшим давлением во время сердцебиения. Приборы для измерения артериального давления называются сфигмоманометрами или тонометрами. За единицу артериального давления приняты миллиметры ртутного столба.

    Кружка Пифагора - занимательный сосуд, использующий гидростатическое давление, а конкретно - принцип сифона. Согласно легенде, Пифагор изобрел эту чашку, чтобы контролировать количество выпитого вина. По другим источникам эта чашка должна была контролировать количество выпитой воды во время засухи. Внутри кружки находится изогнутая П-образная трубка, спрятанная под куполом. Один конец трубки длиннее, и заканчивается отверстием в ножке кружки. Другой, более короткий конец, соединен отверстием с внутренним дном кружки, чтобы вода в чашке наполняла трубку. Принцип работы кружки схож с работой современного туалетного бачка. Если уровень жидкости становится выше уровня трубки, жидкость перетекает во вторую половину трубки и вытекает наружу, благодаря гидростатическому давлению. Если уровень, наоборот, ниже, то кружкой можно спокойно пользоваться.

    Давление в геологии

    Давление - важное понятие в геологии. Без давления невозможно формирование драгоценных камней, как природных, так и искусственных. Высокое давление и высокая температура необходимы также и для образования нефти из остатков растений и животных. В отличие от драгоценных камней, в основном образующихся в горных породах, нефть формируется на дне рек, озер, или морей. Со временем над этими остатками собирается всё больше и больше песка. Вес воды и песка давит на остатки животных и растительных организмов. Со временем этот органический материал погружается глубже и глубже в землю, достигая нескольких километров под поверхностью земли. Температура увеличивается на 25 °C с погружением на каждый километр под земной поверхностью, поэтому на глубине нескольких километров температура достигает 50–80 °C. В зависимости от температуры и перепада температур в среде формирования, вместо нефти может образоваться природный газ.

    Природные драгоценные камни

    Образование драгоценных камней не всегда одинаково, но давление - это одна из главных составных частей этого процесса. К примеру, алмазы образуются в мантии Земли, в условиях высокого давления и высокой температуры. Во время вулканических извержений алмазы перемещаются в верхние слои поверхности Земли благодаря магме. Некоторые алмазы попадают на Землю с метеоритов, и ученые считают, что они образовались на планетах, похожих на Землю.

    Синтетические драгоценные камни

    Производство синтетических драгоценных камней началось в 1950-х годах, и набирает популярность в последнее время. Некоторые покупатели предпочитают природные драгоценные камни, но искусственные камни становятся все более и более популярными, благодаря низкой цене и отсутствию проблем, связанных с добычей натуральных драгоценных камней. Так, многие покупатели выбирают синтетические драгоценные камни потому, что их добыча и продажа не связана с нарушением прав человека, детским трудом и финансированием войн и вооруженных конфликтов.

    Одна из технологий выращивания алмазов в лабораторных условиях - метод выращивания кристаллов при высоком давлении и высокой температуре. В специальных устройствах углерод нагревают до 1000 °C и подвергают давлению около 5 гигапаскалей. Обычно в качестве кристалла-затравки используют маленький алмаз, а для углеродной основы применяют графит. Из него и растет новый алмаз. Это самый распространенный метод выращивания алмазов, особенно в качестве драгоценных камней, благодаря низкой себестоимости. Свойства алмазов, выращенных таким способом, такие же или лучше, чем свойства натуральных камней. Качество синтетических алмазов зависит от метода их выращивания. По сравнению с натуральными алмазами, которые чаще всего прозрачны, большинство искусственных алмазов окрашено.

    Благодаря их твердости, алмазы широко используются на производстве. Помимо этого ценятся их высокая теплопроводность, оптические свойства и стойкость к щелочам и кислотам. Режущие инструменты часто покрывают алмазной пылью, которую также используют в абразивных веществах и материалах. Большая часть алмазов в производстве - искусственного происхождения из-за низкой цены и потому, что спрос на такие алмазы превышает возможности добывать их в природе.

    Некоторые компании предлагают услуги по созданию мемориальных алмазов из праха усопших. Для этого после кремации прах очищается, пока не получится углерод, и затем на его основе выращивают алмаз. Изготовители рекламируют эти алмазы как память об ушедших, и их услуги пользуются популярностью, особенно в странах с большим процентом материально обеспеченных граждан, например в США и Японии.

    Метод выращивания кристаллов при высоком давлении и высокой температуре

    Метод выращивания кристаллов при высоком давлении и высокой температуре в основном используется для синтеза алмазов, но с недавнего времени этот метод помогает усовершенствовать натуральные алмазы или изменить их цвет. Для искусственного выращивания алмазов используют разные прессы. Самый дорогой в обслуживании и самый сложный из них - это пресс кубического типа. Он используется в основном для улучшения или изменения цвета натуральных алмазов. Алмазы растут в прессе со скоростью примерно 0,5 карата в сутки.

    Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

    Инструкция

    Пересчитайте исходную величину давления (Па), если она приведена в мегапаскалях (мПа). Как известно, в одном мегапаскале 1 000 000 паскалей. Допустим, вам необходимо перевести в 3 мегапаскаля, это будет составлять: 3 мПа * 1 000 000 = 3 000 000 Па.

    Вам понадобится

    Инструкция

    Предварительно надо разобраться с теми единицами измерения давления, которые находятся между паскалем и мегапаскалем. В 1 (МПа) содержится 1000 Килопаскалей (КПа), 10000 Гектопаскалей (ГПа), 1000000 Декапаскалей (ДаПа) и 10000000 Паскалей. Это означает, что для того, чтобы перевести , нужно 10 Па возвести в степень "6" или 1 Па умножить на 10 семь раз.

    В первом шаге стало ясно, чтобы прямое действие к переходу от мелких единиц измерения давления к более крупным. Теперь, чтобы произвести обратное, потребуется умножить имеющееся значение в мегапаскалях на 10 семь раз. Иначе говоря, 1 МПа = 10000000 Па.

    Для простоты и наглядности можно рассмотреть : в промышленном баллоне с пропаном давление составляет 9,4 МПа. Сколько Паскалей составит это же самое давление?
    Решение этой задачи требует вышеуказанного способа: 9,4 МПа * 10000000 = 94000000 Па. (94 Паскалей).
    Ответ: в промышленном баллоне давление на его стенки составляет 94000000 Па.

    Видео по теме

    Обратите внимание

    Стоит отметить, что гораздо чаще применяется не классическая единица измерения давления, а так называемые "атмосферы" (атм). 1 атм = 0,1 МПа и 1 МПа = 10 атм. Для рассмотренного выше примера справедливым будет и иной ответ: давление пропана стенки баллона составляет 94 атм.

    Также возможно применение других единиц, таких, как:
    - 1 бар = 100000 Па
    - 1 мм.рт.ст (миллиметр ртутного столба) = 133,332 Па
    - 1 м. вод. ст. (метр водного столба) = 9806,65 Па

    Полезный совет

    Давление обозначается буквой P. Исходя из сведений, данных выше, формула для нахождение давления будет выглядеть так:
    P = F/S, где F - сила воздействия на площадь S.
    Паскаль - единица измерения, применяемая в системе СИ. В системе СГС ("Сантиметр-Грамм-Секунда") давление измеряется в г/(см*с²).

    Источники:

    • как перевести из мегапаскалей в паскали

    А точнее, в килограмм-силах, измеряется сила в системе МКГСС (сокращение от «Метр, КилоГрамм-Сила, Секунда»). Этот набор стандартов единиц измерения сегодня применяется редко, так как вытеснен другой международной системой - СИ. В ней для измерения силы предназначены другие единицы, называемые Ньютонами, поэтому иногда приходится прибегать к конвертации значений из килограмм-сил в Ньютоны и производные от них единицы измерения.

    Инструкция

    Определите точность, с которой вам нужно перевести исходное значение в . Килограмм-сила определена в системе МКГСС как сила, с которой надо воздействовать на тело массой в один

    Конвертер давления - 2mb.ru

    Перевод единиц давления вам пригодится, если данные предоставлены в разных системах измерения. В этом случае наш конвертер давления онлайн обеспечит вас быстрым и точным результатом, и пользоваться формулами вам не придется.


    1 Па Паскаль
    0.0075006168270417 мм рт.ст. Миллиметр ртутного столба
    0.00010197162129779 м вод. ст. Метр водяного столба
    1.0197162129779E-5 ат Техническая атмосфера
    1.0E-5   Бар
    9.8692326671601E-6 атм Физическая атмосфера
    0.00014503768078947 psi Фунт-сила на квадратный дюйм

    Давление — физическая величина, характеризующая состояние сплошной среды и численно равная силе, действующей на единицу площади поверхности перпендикулярно этой поверхности.

    Единицы давления бывают:

    • бар, внесистемная единица, обозначающая давления. В основном применяется в метеорологии, но в этой области чаще всего применяется дольная частица – миллибар, на письме обозначается мбар.
    • паскаль, это официальная единица давления в общепринятой системе координат. Надвание единице дано по имени французского ученого Блеза Паскаля. 1 паскаль равняется давлению, которое вызывает сила в 1ньютон на площади в 1 метр в квадрате. Давление силы перпендикулярно поверхности.
    • миллиметры ртутного столба. Еще одна внесистемная, в основном метеорологическая единица давления, обозначающая давление в атмосфере (может также обозначать давление водяного пара, давление в вакуумных средах и т.п.) 1 миллиметр ртутного столба равен давлению столбика ртути высотой в 1 миллиметр, плотностью 13595 килограмм на кубический метр и при стандартном ускорении свободного падения.

    Воспользуйтесь нашим конвертером давления онлайн, чтобы произвести перевод в единую систему координат.

    Преобразователь давления, MBS 33M, 0,00–2,50 бар, 0,00–36,26 фунтов на кв. Дюйм | Датчики давления | Датчики давления | Sensing Solutions

    ) )
    + power Пин 1
    - общий Пин 2
    Эталонное давление Абсолютный
    Время отклика, макс. [Ms] 4 мс
    Точность +/- диапазон [%], макс. 0,8%
    Точность +/- диапазон [%], тип. 0,3%
    Нижний предел сигнала 3,6
    EAN 5702423056750
    Группа товаров Датчики
    Верхний предел сигнала 22.4
    Компенсация температурного воздействия, макс. [° C] 80 ° С
    Компенсация влияния температуры, макс. [° F] 176 ° F
    Компенсация температурного воздействия, мин. [° C] 0 ° С
    Компенсация температурного воздействия, мин. [° F] 32 ° F
    Макс.ток питания [мА] 28 мА
    Напряжение питания, макс. [В] DC 30 В
    Напряжение питания, мин. [В] DC 10 В
    Название продукта Преобразователь давления
    Нелинейность BFSL +/- диапазон [%] 0.2%
    Упаковка, шт. В картонной коробке 14 шт
    Упаковка, тип Товар в индивидуальной упаковке
    Электрическое подключение Штекер DIN
    Электрическое подключение внешн. / Внутр. Внеш. / Внутр.
    Электроподключение, типоразмер Стр. 13.5
    Электрическое подключение, стандартное EN 175301-803-A
    Давление перегрузки, макс. [Бар] 8 бар
    Напорный штуцер HEX [мм] 27 мм
    Напорный патрубок, GZ, GW Вызов.
    Напорный патрубок, размер 1/2
    Напорный патрубок, стандартный EN 837
    Напорный патрубок, тип G
    Плоская диафрагма Нет
    Регулировка нуля и диапазона Нет
    Класс защиты IP65
    Выходной сигнал Текущий
    Выходной сигнал, макс.[мА] 20 мА
    Выходной сигнал, мин. [мА] 4 мА
    Средняя температура, макс. [° C] 85 ° С
    Средняя температура, макс. [° F] 185 ° F
    Средняя температура, мин. [° C] -40 ° С
    Средняя температура, мин.[° F] -40 ° F (
    Температура окружающей среды, макс. [° C] 85 ° С
    Температура окружающей среды, макс. [° F] 185 ° F
    Температура окружающей среды, мин. [° C] -40 ° С
    Температура окружающей среды, мин. [° F] -40 ° F (
    Тип, спецификация МБС 33М-1421-A9AB08-0
    Тип, исполнение МБС 33М
    Демпфер пульсации Нет
    Искробезопасное исполнение Нет
    Диапазон измерения, макс.[бар] 2,5 бар
    Диапазон измерения, макс. [Psi] 36,26 фунтов на кв. Дюйм
    Диапазон измерения, мин. [бар] 0 бар
    Диапазон измерения, мин. [фунт / кв. дюйм] 0 фунтов на кв. Дюйм
    .

    Преобразователь давления, MBS 4010, -0,25 бар - 0,50 бар, -3,63 фунтов на квадратный дюйм - 7,25 фунтов на квадратный дюйм | Датчики давления | Датчики давления | Sensing Solutions

    )
    + power Пин 1
    - общий Пин 2
    Сертификаты, согласования ATEX
    Сертификаты, согласования, комментарии ATEX Ex nA IIA T3 Gc
    Эталонное давление Датчик (относительный)
    Время отклика, макс.[мс] 4 мс
    Точность +/- шкала [%], макс. 1%
    Точность +/- диапазон [%], тип. 0,2%
    Нижний предел сигнала 3,6
    EAN 5702423157488
    Группа товаров Датчики
    Верхний предел сигнала 22.4
    Компенсация температурного воздействия, макс. [° C] 80 ° С
    Компенсация влияния температуры, макс. [° F] 176 ° F
    Компенсация температурного воздействия, мин. [° C] 0 ° С
    Компенсация температурного воздействия, мин. [° F] 32 ° F
    Макс.перегрузка по давлению [кПа] 200 кПа
    Напряжение питания, макс. [В] DC 30 В
    Напряжение питания, мин. [В] DC 10 В
    Название продукта Преобразователь давления
    Нелинейность BFSL +/- диапазон [%] 0.2%
    Упаковка, шт. В картонной коробке 12 шт
    Упаковка, тип Товар в индивидуальной упаковке
    Электрическое подключение Штекер DIN
    Электрическое подключение внешн. / Внутр. Внеш. / Внутр.
    Электроподключение, типоразмер Pg 9 900 007
    Электрическое подключение, стандартное EN 175301-803-A
    Перегрузка по давлению, макс.[бар] 2 бара
    Напорный штуцер HEX [мм] 41 мм
    Напорный патрубок, GZ, GW Вызов.
    Напорный патрубок, размер 1
    Напорный патрубок, стандартный ISO 228-1
    Напорный патрубок, тип G
    Плоская диафрагма Да
    Регулировка нуля и диапазона Да
    Экстраполировать недостающее давление 0 = Стандартный
    Класс защиты IP65
    Выходной сигнал Текущий
    Выходной сигнал, макс.[мА] 20 мА
    Выходной сигнал, мин. [мА] 4 мА
    Средняя температура, макс. [° C] 85 ° С
    Средняя температура, макс. [° F] 185 ° F
    Средняя температура, мин. [° C] -40 ° С
    Средняя температура, мин.[° F] -40 ° F (
    Температура окружающей среды, макс. [° C] 85 ° С
    Температура окружающей среды, макс. [° F] 185 ° F
    Температура окружающей среды, мин. [° C] -10 ° С
    Температура окружающей среды, мин. [° F] 14 ° F
    Тип, спецификация МБС 4010-DB11-A1CB11-2
    Тип, исполнение МБС 4010
    Демпфер пульсации Нет
    Указания по электрическому подключению Регулируемый верх
    Искробезопасное исполнение Нет
    Диапазон давления [кПа] [Макс.] 50 кПа
    Диапазон давления [кПа] [Мин] -25 кПа
    Диапазон измерения, макс. [Бар] 0,5 бар
    Диапазон измерения, макс. [Psi] 7,25 фунтов на кв. Дюйм
    Диапазон измерения, мин. [бар] -0,25 бар
    Диапазон измерения, мин.[фунт / кв. дюйм] -3,63 фунта на кв. Дюйм
    .

    международных единиц давления. Примеры, конверсия

    Пересчет единиц давления

    В зависимости от природы описываемого явления / явления будут использоваться разные единицы измерения давления. Те же данные в США, касающиеся, например, механических напряжений, возникающих в данном элементе устройства, будут представлены с использованием других единиц, чем в Польше. Единица измерения напряжения в системе СИ - это паскаль (Па). Напротив, обычно используемой единицей в США является фунт на квадратный дюйм (psi).

    Преобразователь единиц давления

    Используя приведенные ниже преобразования, вы можете легко конвертировать между наиболее распространенными единицами измерения давления.

    Легенда:

    • 1 бар (бар) = 1000000 Па = 1 МПа = 1,02 при = 0,987 атм = 750 Tr = 705,062 мм рт. Ст. = 14,50377 фунтов на кв. Дюйм

    • 1 мегапаскаль ( МПа) = 1000 000 Па = 10 бар = 10,2 при = 9,87 атм = 7500,637 Tr = 7 500,615 мм рт. Ст. = 145,038 фунт / кв. Дюйм

    • 1 фунт на квадратный дюйм (psi) = 6894,76 Па = 0,07 бар = 0,07 при = 0,07 атм = 51,71 Tr = 51,71 мм рт. Ст.

    • 1 метр водяного столба (mH 2 O) = 9806,65 Па = 0,10 бар = 0,10 атм = 0,10 атм = 73,56 Tr = 73,56 мм рт. Ст. = 1,42 фунта на кв. Дюйм

    • 1 миллиметр столбик ртути (мм рт. ст.) = 133,322 Па = 0,00133 бар = 0,00136 и при = 0,00132 атм = 1.000000142 Tr = 0,0193 фунта на кв. Дюйм

    • 1 направляющая (Tr) = 133,322 Па = 0,00133 бар = 0,00136 при = 0,00132 атм = 0,999999857 мм рт. Ст. = 0,0193 фунта на кв. Дюйм

    • 1 техническая атмосфера (ат) = 98 066,50 Па = 0,981 бар = 0,968 атм = 735,561 Tr = 735,561 мм рт. Ст. = 14,223 фунт / кв. Дюйм

    • 1 физическая атмосфера (атм) = 101325 Па = 1,01325 бар = 1,0332 при = 760,002 Tr = 7 760,002 мм рт. Ст. = 14,696 фунт / кв. Дюйм

    Перевести единицы давления

    Примером замены единиц измерения давления может быть спецификация прибора для измерения давления, которым является датчик давления , напримерJUMO TAROS S47 P. В версии с диапазоном измерения относительного давления от 0 до 6 бар давление разрыва составляет 60 бар. Это означает, что при давлении 60 бар = 6 МПа = 61,183 и при = 59,215 атм = 870,226 фунтов на квадратный дюйм = 37503,18 мм рт. Ст. происходит необратимое повреждение устройства.

    Также стоит упомянуть устройство для измерения давления, такое как датчик перепада давления , например датчик давления для неагрессивных газов. Давление на входе составляет от 0 до 5 мбар.Это означает, что максимальная разница давления, которую может обнаружить датчик, составляет 5 мбар = 10 -3 Па = 1 гПа = 0,0051 при = 0,00493 атм = 0,0725 фунта на кв. Дюйм.

    .

    Датчик давления 1 / 8-27 Dryseal NPTF; 80 фунтов на квадратный дюйм (5 бар) / 10 фунтов на квадратный дюйм (0,7 бар) бар; земля-3 контакта DRABPOL

    Настройки файлов cookie

    Здесь вы можете определить свои предпочтения в отношении использования нами файлов cookie.

    Требуется для работы страницы

    Эти файлы cookie необходимы для работы нашего веб-сайта, поэтому вы не можете их отключить.

    Функциональный

    Эти файлы позволяют использовать другие функции веб-сайта (кроме необходимых для его работы).Их включение предоставит вам доступ ко всем функциям веб-сайта.

    Аналитический

    Эти файлы позволяют нам анализировать наш интернет-магазин, что может способствовать его лучшему функционированию и адаптации к потребностям пользователей.

    Продавцы аналитического программного обеспечения

    Эти файлы используются поставщиком программного обеспечения, под управлением которого работает наш магазин.Они не объединяются с другими данными, введенными вами в магазине. Цель сбора этих файлов - выполнить анализ, который будет способствовать развитию программного обеспечения. Вы можете узнать больше об этом в Политике использования домашних файлов cookie.

    Маркетинг

    Благодаря этим файлам мы можем проводить маркетинговую деятельность.

    .90,000 200 бар 150 psi Доступны аналоговые и цифровые выходы для датчика давления газа. Датчики давления серии

    JP очень экономичны и подходят для недорогих крупных коммерческих и промышленных применений. Эта серия включает в себя все технологии MEMS, компенсированные цифровой ASIC. Цепь EMI / RFI сконструирована из непористого корпуса из нержавеющей стали, сваренного с помощью лазерной сварки, для обеспечения высокоточного, надежного и стабильного выходного сигнала при ограниченном пространстве для установки.

    Этот продукт предназначен для OEM-клиентов, использующих средние и большие объемы, с дополнительными портами давления и электрическими соединениями. Стандартная версия подходит для многих, но приложения, предназначенные для команды разработчиков, готовы предоставить индивидуальный дизайн там, где требуются объем и применение.

    Модель JPG2 JPG3
    Принцип Кремниевый тензодатчик Дисперсный кремний с масляным заполнением

    Функции

    Конструкция из стали • MEMS • Стальная конструкция • 0-дюймовое кольцо, без сварных швов, без масла
    • Низкая стоимость, высокая надежность

    • Изолированный датчик давления из нержавеющей стали

    • Высокая точность, стабильность и повторяемость

    • Широкий диапазон давлений, хорошая совместимость

    Детальное изображение

    Размеры

    Приложение

    1.Какие данные мне нужно предоставить, если я хочу разместить заказ?

    Нам необходимо знать следующую информацию: Емкость, использование и другие связанные параметры, вам нужно.

    2. Есть ли у вас скидки?

    Да, если вы покупаете большое КОЛИЧЕСТВО, отправьте нам письмо по электронной почте, мы дадим вам большую скидку.

    3. Какие существуют условия оплаты?

    Мы принимаем T / T, L / C, Western Union, Money Gram и т. Д.

    .

    HYDAC |

    товаров

    Электронные датчики давления постепенно заменяют механические реле, работающие по принципу замыкающих контактов. Решающими факторами являются высокая точность, отсутствие износа контактов, стабильный сигнал, программируемые пороги разряда и большое количество циклов переключения.

    Продукты: Нет дисплея
    • EDS 4000, для стационарной и мобильной гидравлики, заводская настройка или программируемая, доступна с сертификатами ATEX, CSA, IECEx.
    • EDS 810 для OEM-приложений в промышленности и мобильных устройств, заводская настройка, сертификация ECE для использования на дорогах общего пользования, доступен дополнительный интерфейс IO-Link
    • EDS 710, для серийного производства в промышленности и мобильных устройств - ограниченное пространство для установки, заводская настройка
    • EDS 410, для OEM-приложений, заводская установка или программируемая

    С дисплеем фактического значения

    • EDS 8000, VDMA-совместимое меню навигации, 1 или 2 коммутационных выхода PNP, 4-символьный дисплей, IP-67
    • EDS 3000, дисплей регулируется в двух плоскостях, 4-символьный светодиодный дисплей, отображается в барах, фунтах на квадратный дюйм или МПа,
      Дополнительные опции:
      - соответствие стандарту Desina
      - дополнительная передняя защитная мембрана
    • EDS 300, 3-символьный светодиодный дисплей, мембранная клавиатура,
    • EDS 300, для морских и морских перевозок, с сертификатом:
      - Американское бюро судоходства
      - Судовой регистр Ллойда
      - Det Norske Veritas
      - Germanischer Lloyd
      - Bureau Veritas
    • EDS 601, монтаж на панели или вместо манометра, 4-символьный дисплей, два релейных выхода
    • EDS 1700, 4 релейных выхода, 4-символьный дисплей, множество программируемых дополнительных функций

    Технологии:

    • Толстый слой диметилсульфида на керамической измерительной диафрагме (низкое давление)
    • Тонкий слой диметилсульфида на диафрагме из нержавеющей стали (низкое и высокое давление)

    Стандартные диапазоны давления

    • 0... 1 и 0 ... 600/1000 бар избыточное давление
    • до 2,5 бар абсолютного давления
    • Регулируется для блоков PSI и МПа
    • Другие диапазоны сканирования и специальные калибровки доступны по запросу.

    Обзор реле давления

    90 127 90 127 90 127 90 127 90 127 90 127 90 127 90 127 90 127 90 127 90 127 90 127 90 127 90 127 90 127 90 127 90 127 90 127 90 127 90 127
    EDS 3400 90 068 3300 90 069 3100 300 8000 601 1700 4400 4300 4100 820 810 710 410
    Погрешность измерения (макс.) 1.0 1.0 1.0 1.0 1.0 1.0 0,5 1.0 1.0 1.0 1.0 1.0 1.0 1.0

    Низкое давление
    (до 40 бар)


    Икс Икс Икс Икс Икс Икс
    Икс Икс Икс
    Икс Икс

    Высокое давление
    (от 40 бар)

    Икс

    Икс Икс Икс Икс Икс Икс Икс Икс Икс

    Манометрическое давление

    Икс Икс
    Икс Икс Икс Икс Икс Икс Икс Икс Икс Икс

    Абсолютное давление



    Икс




    Икс


    Коммутационные выходы

    2 2 2 2 2 2 4 2 2 2 2 2 1 2

    Аналоговые выходы

    Икс Икс Икс Икс
    Икс Икс



    Дисплей

    Икс Икс Икс Икс Икс Икс Икс



    Программируемый

    Икс Икс Икс Икс Икс Икс Икс Икс Икс Икс Икс


    Заводская установка

    Икс Икс Икс Икс Икс Икс

    Стандартный DESINA

    Икс Икс Икс







    Меню навигации VDMA

    Икс Икс Икс
    Икс





    Розничная торговля

    Икс Икс Икс Икс Икс Икс Икс Икс Икс Икс Икс

    Заказы OEM

    Икс Икс Икс Икс Икс Икс

    Защитная диафрагма

    Икс Икс








    Интерфейс IO-Link

    Икс Икс Икс Икс
    Сертификация ECE







    Икс

    Взрывоопасная зона








    Икс Икс Икс


    Морские сертификаты




    Икс






    Технические характеристики UL

    Икс Икс Икс
    Икс


    Икс

    Примечание. Не все функции можно комбинировать.Более подробную информацию можно найти в таблицах данных.

    .

    Смотрите также